BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32027416)

  • 1. Stereochemical analysis of chiral amines, diamines, and amino alcohols: Practical chiroptical sensing based on dynamic covalent chemistry.
    Hassan DS; Thanzeel FY; Wolf C
    Chirality; 2020 Apr; 32(4):457-463. PubMed ID: 32027416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chirality sensing of amines, diamines, amino acids, amino alcohols, and α-hydroxy acids with a single probe.
    Bentley KW; Nam YG; Murphy JM; Wolf C
    J Am Chem Soc; 2013 Dec; 135(48):18052-5. PubMed ID: 24261969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism.
    Jo HH; Lin CY; Anslyn EV
    Acc Chem Res; 2014 Jul; 47(7):2212-21. PubMed ID: 24892802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Chiroptical Sensing of Free Amino Acids, Biothiols, Amines, and Amino Alcohols with an Aryl Fluoride Probe.
    Thanzeel FY; Sripada A; Wolf C
    J Am Chem Soc; 2019 Oct; 141(41):16382-16387. PubMed ID: 31564090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Chirality Sensing with an Auxiliary-Free Earth-Abundant Cobalt Probe.
    De Los Santos ZA; Lynch CC; Wolf C
    Angew Chem Int Ed Engl; 2019 Jan; 58(4):1198-1202. PubMed ID: 30500091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Covalent Optical Chirality Sensing with a Sterically Encumbered Aminoborane.
    De Los Santos ZA; Lynch CC; Wolf C
    Chemistry; 2022 Nov; 28(61):e202202028. PubMed ID: 35796635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ninhydrin Revisited: Quantitative Chirality Recognition of Amines and Amino Alcohols Based on Nondestructive Dynamic Covalent Chemistry.
    Pilicer SL; Wolf C
    J Org Chem; 2020 Sep; 85(17):11560-11565. PubMed ID: 32791837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiroptical sensing of amino acids, amines, amino alcohols, alcohols and terpenes with π-extended acyclic cucurbiturils.
    Hassan DS; De Los Santos ZA; Brady KG; Murkli S; Isaacs L; Wolf C
    Org Biomol Chem; 2021 May; 19(19):4248-4253. PubMed ID: 33885685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic Chirality Sensing with Pyridoxal-5'-phosphate.
    Pilicer SL; Bakhshi PR; Bentley KW; Wolf C
    J Am Chem Soc; 2017 Feb; 139(5):1758-1761. PubMed ID: 28128945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chirality sensing using stereodynamic probes with distinct electronic circular dichroism output.
    Wolf C; Bentley KW
    Chem Soc Rev; 2013 Jun; 42(12):5408-24. PubMed ID: 23482984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative chirality sensing of amines and amino alcohols via Schiff base formation with a stereodynamic UV/CD probe.
    De Los Santos ZA; Ding R; Wolf C
    Org Biomol Chem; 2016 Feb; 14(6):1934-9. PubMed ID: 26765638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chirality sensing with stereodynamic copper(I) complexes.
    De Los Santos ZA; Legaux NM; Wolf C
    Chirality; 2017 Nov; 29(11):663-669. PubMed ID: 28902429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid organocatalytic chirality analysis of amines, amino acids, alcohols, amino alcohols and diols with achiral iso(thio)cyanate probes.
    Nelson E; Formen JSSK; Wolf C
    Chem Sci; 2021 Jul; 12(25):8784-8790. PubMed ID: 34257878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral Induction and Remote Chiral Communication in Quinoline Oligoamide Foldamers for Determination of Enantiomeric Excess and Absolute Configuration of Chiral Amines and Their Derivatives.
    Zheng L; Zhan Y; Ye L; Zheng D; Wang Y; Zhang K; Jiang H
    Chemistry; 2019 Nov; 25(62):14162-14168. PubMed ID: 31389064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An advance on exploring N-tert-butanesulfinyl imines in asymmetric synthesis of chiral amines.
    Lin GQ; Xu MH; Zhong YW; Sun XW
    Acc Chem Res; 2008 Jul; 41(7):831-40. PubMed ID: 18533688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Chirality and Concentration Sensing of Alcohols, Diols, Hydroxy Acids, Amines and Amino Alcohols using Chlorophosphite Sensors in a Relay Assay.
    Thanzeel FY; Balaraman K; Wolf C
    Angew Chem Int Ed Engl; 2020 Nov; 59(48):21382-21386. PubMed ID: 32762103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive chirality sensing via Schiff base formation.
    Pilicer SL; Mancinelli M; Mazzanti A; Wolf C
    Org Biomol Chem; 2019 Jul; 17(27):6699-6705. PubMed ID: 31243416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Real-Time Strategy for Chiroptical Sensing and Enantiomeric Excess Determination of Primary Amines via an Acid-Base Reaction.
    Wu D; Wang F; Ma C; Tan L; Cai W; Li J; Kong Y
    Org Lett; 2022 Jul; 24(28):5226-5229. PubMed ID: 35822909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circularly Polarized Luminescence of Aluminum Complexes for Chiral Sensing of Amino Acid and Amino Alcohol.
    Jin Q; Wang F; Chen S; Zhou L; Jiang H; Zhang L; Liu M
    Chem Asian J; 2020 Jan; 15(2):319-324. PubMed ID: 31825169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Determination of Concentration and Enantiomeric Composition in Fluorescent Sensing.
    Pu L
    Acc Chem Res; 2017 Apr; 50(4):1032-1040. PubMed ID: 28287702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.