These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 32027653)
1. Constraints on microbial communities, decomposition and methane production in deep peat deposits. Kluber LA; Johnston ER; Allen SA; Hendershot JN; Hanson PJ; Schadt CW PLoS One; 2020; 15(2):e0223744. PubMed ID: 32027653 [TBL] [Abstract][Full Text] [Related]
2. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog. Gill AL; Giasson MA; Yu R; Finzi AC Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635 [TBL] [Abstract][Full Text] [Related]
3. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production. Sihi D; Inglett PW; Gerber S; Inglett KS Glob Chang Biol; 2018 Jan; 24(1):e259-e274. PubMed ID: 28746792 [TBL] [Abstract][Full Text] [Related]
4. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Treat CC; Wollheim WM; Varner RK; Grandy AS; Talbot J; Frolking S Glob Chang Biol; 2014 Aug; 20(8):2674-86. PubMed ID: 24616169 [TBL] [Abstract][Full Text] [Related]
5. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Tveit AT; Urich T; Frenzel P; Svenning MM Proc Natl Acad Sci U S A; 2015 May; 112(19):E2507-16. PubMed ID: 25918393 [TBL] [Abstract][Full Text] [Related]
6. Climate drivers alter nitrogen availability in surface peat and decouple N Petro C; Carrell AA; Wilson RM; Duchesneau K; Noble-Kuchera S; Song T; Iversen CM; Childs J; Schwaner G; Chanton JP; Norby RJ; Hanson PJ; Glass JB; Weston DJ; Kostka JE Glob Chang Biol; 2023 Jun; 29(11):3159-3176. PubMed ID: 36999440 [TBL] [Abstract][Full Text] [Related]
7. Anaerobic methane oxidation is quantitatively important in deeper peat layers of boreal peatlands: Evidence from anaerobic incubations, in situ stable isotopes depth profiles, and microbial communities. Sabrekov AF; Semenov MV; Terentieva IE; Krasnov GS; Kharitonov SL; Glagolev MV; Litti YV Sci Total Environ; 2024 Mar; 916():170213. PubMed ID: 38278226 [TBL] [Abstract][Full Text] [Related]
8. Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in Peninsular Malaysia. Dhandapani S; Ritz K; Evers S; Yule CM; Sjögersten S Sci Total Environ; 2019 Mar; 655():220-231. PubMed ID: 30471590 [TBL] [Abstract][Full Text] [Related]
9. Microbial communities and functions are structured by vertical geochemical zones in a northern peatland. Wang HY; Yu ZG; Zhou FW; Hernandez JC; Grandjean A; Biester H; Xiao KQ; Knorr KH Sci Total Environ; 2024 Nov; 950():175273. PubMed ID: 39111416 [TBL] [Abstract][Full Text] [Related]
10. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog. Reumer M; Harnisz M; Lee HJ; Reim A; Grunert O; Putkinen A; Fritze H; Bodelier PLE; Ho A Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180368 [TBL] [Abstract][Full Text] [Related]
11. Porewater constituents inhibit microbially mediated greenhouse gas production (GHG) and regulate the response of soil organic matter decomposition to warming in anoxic peat from a Sphagnum-dominated bog. Song T; Liu Y; Kolton M; Wilson RM; Keller JK; Rolando JL; Chanton JP; Kostka JE FEMS Microbiol Ecol; 2023 Jun; 99(7):. PubMed ID: 37280172 [TBL] [Abstract][Full Text] [Related]
12. The role of oxygen in stimulating methane production in wetlands. Wilmoth JL; Schaefer JK; Schlesinger DR; Roth SW; Hatcher PG; Shoemaker JK; Zhang X Glob Chang Biol; 2021 Nov; 27(22):5831-5847. PubMed ID: 34409684 [TBL] [Abstract][Full Text] [Related]
13. Microbial sensitivity to temperature and sulfate deposition modulates greenhouse gas emissions from peat soils. AminiTabrizi R; Graf-Grachet N; Chu RK; Toyoda JG; Hoyt DW; Hamdan R; Wilson RM; Tfaily MM Glob Chang Biol; 2023 Apr; 29(7):1951-1970. PubMed ID: 36740729 [TBL] [Abstract][Full Text] [Related]
14. Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios. Juottonen H; Eiler A; Biasi C; Tuittila ES; Yrjälä K; Fritze H Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27913414 [TBL] [Abstract][Full Text] [Related]
15. Elevated temperatures drive abiotic and biotic degradation of organic matter in a peat bog under oxic conditions. AminiTabrizi R; Dontsova K; Graf Grachet N; Tfaily MM Sci Total Environ; 2022 Jan; 804():150045. PubMed ID: 34798718 [TBL] [Abstract][Full Text] [Related]
16. Linking prokaryotic community composition to carbon biogeochemical cycling across a tropical peat dome in Sarawak, Malaysia. Dom SP; Ikenaga M; Lau SYL; Radu S; Midot F; Yap ML; Chin MY; Lo ML; Jee MS; Maie N; Melling L Sci Rep; 2021 Mar; 11(1):6416. PubMed ID: 33742002 [TBL] [Abstract][Full Text] [Related]
17. Warming promotes soil CO Lu B; Song L; Zang S; Wang H Sci Total Environ; 2022 Jul; 829():154725. PubMed ID: 35331769 [TBL] [Abstract][Full Text] [Related]
18. Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide. Voigt C; Lamprecht RE; Marushchak ME; Lind SE; Novakovskiy A; Aurela M; Martikainen PJ; Biasi C Glob Chang Biol; 2017 Aug; 23(8):3121-3138. PubMed ID: 27862698 [TBL] [Abstract][Full Text] [Related]