These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32027653)

  • 41. Age, extent and carbon storage of the central Congo Basin peatland complex.
    Dargie GC; Lewis SL; Lawson IT; Mitchard ET; Page SE; Bocko YE; Ifo SA
    Nature; 2017 Feb; 542(7639):86-90. PubMed ID: 28077869
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Compositional stability of peat in ecosystem-scale warming mesocosms.
    Baysinger MR; Wilson RM; Hanson PJ; Kostka JE; Chanton JP
    PLoS One; 2022; 17(3):e0263994. PubMed ID: 35235578
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths.
    Johnston ER; Hatt JK; He Z; Wu L; Guo X; Luo Y; Schuur EAG; Tiedje JM; Zhou J; Konstantinidis KT
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):15096-15105. PubMed ID: 31285347
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temperature and organic carbon quality control the anaerobic carbon mineralization in peat profiles via modulating microbes: A case study of Changbai Mountain.
    Wang H; Xu Y; Kumar A; Knorr KH; Zhao X; Perez JPH; Sun G; Yu ZG
    Environ Res; 2023 Nov; 237(Pt 1):116904. PubMed ID: 37595828
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska.
    Lyu Z; Genet H; He Y; Zhuang Q; McGuire AD; Bennett A; Breen A; Clein J; Euskirchen ES; Johnson K; Kurkowski T; Pastick NJ; Rupp TS; Wylie BK; Zhu Z
    Ecol Appl; 2018 Sep; 28(6):1377-1395. PubMed ID: 29808543
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment.
    Wilson RM; Tfaily MM; Kolton M; Johnston ER; Petro C; Zalman CA; Hanson PJ; Heyman HM; Kyle JE; Hoyt DW; Eder EK; Purvine SO; Kolka RK; Sebestyen SD; Griffiths NA; Schadt CW; Keller JK; Bridgham SD; Chanton JP; Kostka JE
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161254
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Persistent high temperature and low precipitation reduce peat carbon accumulation.
    Bragazza L; Buttler A; Robroek BJ; Albrecht R; Zaccone C; Jassey VE; Signarbieux C
    Glob Chang Biol; 2016 Dec; 22(12):4114-4123. PubMed ID: 27081764
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aerobic and anaerobic decomposition rates in drained peatlands: Impact of botanical composition.
    Tolunay D; Kowalchuk GA; Erkens G; Hefting MM
    Sci Total Environ; 2024 Jun; 930():172639. PubMed ID: 38670365
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Potential Carbon Losses From Peat Profiles: Effects of Temperature, Drought Cycles, and Fire.
    Hogg EH; Lieffers VJ; Wein RW
    Ecol Appl; 1992 Aug; 2(3):298-306. PubMed ID: 27759264
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland.
    Hough M; McCabe S; Vining SR; Pickering Pedersen E; Wilson RM; Lawrence R; Chang KY; Bohrer G; ; Riley WJ; Crill PM; Varner RK; Blazewicz SJ; Dorrepaal E; Tfaily MM; Saleska SR; Rich VI
    Glob Chang Biol; 2022 Feb; 28(3):950-968. PubMed ID: 34727401
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of vegetation communities, water table, and peat composition as drivers of greenhouse gas emissions in lowland tropical peatlands.
    Hoyos-Santillan J; Lomax BH; Large D; Turner BL; Lopez OR; Boom A; Sepulveda-Jauregui A; Sjögersten S
    Sci Total Environ; 2019 Oct; 688():1193-1204. PubMed ID: 31726550
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Variation in Temperature Dependences across Europe Reveals the Climate Sensitivity of Soil Microbial Decomposers.
    Cruz-Paredes C; Tájmel D; Rousk J
    Appl Environ Microbiol; 2023 May; 89(5):e0209022. PubMed ID: 37162342
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Peatland Microbial Community Composition Is Driven by a Natural Climate Gradient.
    Seward J; Carson MA; Lamit LJ; Basiliko N; Yavitt JB; Lilleskov E; Schadt CW; Smith DS; Mclaughlin J; Mykytczuk N; Willims-Johnson S; Roulet N; Moore T; Harris L; Bräuer S
    Microb Ecol; 2020 Oct; 80(3):593-602. PubMed ID: 32388577
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Activity and metabolic regulation of methane production in deep peat profiles of boreal bogs].
    Kravchenko IK; Sirin AA
    Mikrobiologiia; 2007; 76(6):888-95. PubMed ID: 18297882
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microbial Functional Responses Explain Alpine Soil Carbon Fluxes under Future Climate Scenarios.
    Qi Q; Haowei Y; Zhang Z; Van Nostrand JD; Wu L; Guo X; Feng J; Wang M; Yang S; Zhao J; Gao Q; Zhang Q; Zhao M; Xie C; Ma Z; He JS; Chu H; Huang Y; Zhou J; Yang Y
    mBio; 2021 Feb; 12(1):. PubMed ID: 33622729
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog.
    Kotsyurbenko OR; Chin KJ; Glagolev MV; Stubner S; Simankova MV; Nozhevnikova AN; Conrad R
    Environ Microbiol; 2004 Nov; 6(11):1159-73. PubMed ID: 15479249
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales.
    Yvon-Durocher G; Allen AP; Bastviken D; Conrad R; Gudasz C; St-Pierre A; Thanh-Duc N; del Giorgio PA
    Nature; 2014 Mar; 507(7493):488-91. PubMed ID: 24670769
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Post-fire carbon dynamics in the tropical peat swamp forests of Brunei reveal long-term elevated CH
    Lupascu M; Akhtar H; Smith TEL; Sukri RS
    Glob Chang Biol; 2020 Sep; 26(9):5125-5145. PubMed ID: 32475055
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition.
    Flanagan NE; Wang H; Winton S; Richardson CJ
    Glob Chang Biol; 2020 Jul; 26(7):3930-3946. PubMed ID: 32388914
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microbial activity contributes to spatial heterogeneity of wetland methane fluxes.
    Arnold W; Taylor M; Bradford M; Raymond P; Peccia J
    Microbiol Spectr; 2023 Sep; 11(5):e0271423. PubMed ID: 37728556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.