These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32027730)

  • 1. Correction: An electroporation-free method based on Red recombineering for markerless deletion and genomic replacement in the Escherichia coli DH1 genome.
    Wei Y; Deng P; Mohsin A; Yang Y; Zhou H; Guo M; Fang H
    PLoS One; 2020; 15(2):e0229072. PubMed ID: 32027730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electroporation-free method based on Red recombineering for markerless deletion and genomic replacement in the Escherichia coli DH1 genome.
    Wei Y; Deng P; Mohsin A; Yang Y; Zhou H; Guo M; Fang H
    PLoS One; 2017; 12(10):e0186891. PubMed ID: 29065183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Markerless DNA deletion based on Red recombination and in vivo I-Sec I endonuclease cleavage in Escherichia coli chromosome].
    Zhu M; Yu J; Zhou C; Fang H
    Sheng Wu Gong Cheng Xue Bao; 2016 Jan; 32(1):114-26. PubMed ID: 27363204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Markerless Deletion System for Escherichia coli Using Short Homologous Sequences and Positive-Negative Selectable Cassette.
    Chen F; Jiang J; OuYang H; Ma T; Peng Z; Ma Y; Chen X; Pang D; Lin S; Ren L
    Appl Biochem Biotechnol; 2015 Jul; 176(5):1472-81. PubMed ID: 25957274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas putida KT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxP site-specific recombination.
    Luo X; Yang Y; Ling W; Zhuang H; Li Q; Shang G
    FEMS Microbiol Lett; 2016 Feb; 363(4):. PubMed ID: 26802072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex Genome Editing in Escherichia coli.
    Jensen SI; Nielsen AT
    Methods Mol Biol; 2018; 1671():119-129. PubMed ID: 29170956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of lambda Red-mediated recombineering and Cre/lox for generation of markerless chromosomal deletions in avian pathogenic Escherichia coli.
    Tuntufye HN; Goddeeris BM
    FEMS Microbiol Lett; 2011 Dec; 325(2):140-7. PubMed ID: 22029745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombineering and I-SceI-mediated Pseudomonas putida KT2440 scarless gene deletion.
    Chen Z; Ling W; Shang G
    FEMS Microbiol Lett; 2016 Nov; 363(21):. PubMed ID: 27765807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction: Phenotypic and genomic analyses of bacteriophages targeting environmental and clinical CS3-expressing enterotoxigenic Escherichia coli (ETEC) strains.
    Chakraborty S; von Mentzer A; Begum YA; Manzur M; Hasan M; Ghosh AN; Hossain MA; Camilli A; Qadri F
    PLoS One; 2019; 14(3):e0213612. PubMed ID: 30835765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli.
    Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2015 Aug; 81(15):5103-14. PubMed ID: 26002895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seven gene deletions in seven days: Fast generation of Escherichia coli strains tolerant to acetate and osmotic stress.
    Jensen SI; Lennen RM; Herrgård MJ; Nielsen AT
    Sci Rep; 2015 Dec; 5():17874. PubMed ID: 26643270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and functional characterization of an integrative form lambda Red recombineering Escherichia coli strain.
    Song J; Dong H; Ma C; Zhao B; Shang G
    FEMS Microbiol Lett; 2010 Aug; 309(2):178-83. PubMed ID: 20618864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli.
    Murphy KC; Campellone KG
    BMC Mol Biol; 2003 Dec; 4():11. PubMed ID: 14672541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome.
    Pósfai G; Kolisnychenko V; Bereczki Z; Blattner FR
    Nucleic Acids Res; 1999 Nov; 27(22):4409-15. PubMed ID: 10536150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.
    Li J; Sun J; Gao X; Wu Z; Shang G
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction: Comparative Exposure Assessment of ESBL-Producing Escherichia coli through Meat Consumption.
    PLOS ONE Staff
    PLoS One; 2017; 12(2):e0173134. PubMed ID: 28235059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correction: Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication.
    PLOS ONE Staff
    PLoS One; 2016; 11(6):e0157207. PubMed ID: 27271300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction: Genetic characterization of blaNDM-harboring plasmids in carbapenem-resistant Escherichia coli from Myanmar.
    PLOS ONE Staff
    PLoS One; 2017; 12(12):e0189435. PubMed ID: 29211776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction: Dual pathway for metabolic engineering of Escherichia coli to produce the highly valuable hydroxytyrosol.
    PLOS ONE Staff
    PLoS One; 2019; 14(12):e0226760. PubMed ID: 31834909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correction: Effects of Lactobacillus plantarum 15-1 and fructooligosaccharides on the response of broilers to pathogenic Escherichia coli O78 challenge.
    Ding S; Wang Y; Yan W; Li A; Jiang H; Fang J
    PLoS One; 2019; 14(9):e0222877. PubMed ID: 31527884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.