BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32027954)

  • 1. Accretion history of large ribosomal subunits deduced from theoretical minimal RNA rings is congruent with histories derived from phylogenetic and structural methods.
    Demongeot J; Seligmann H
    Gene; 2020 May; 738():144436. PubMed ID: 32027954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparisons between small ribosomal RNA and theoretical minimal RNA ring secondary structures confirm phylogenetic and structural accretion histories.
    Demongeot J; Seligmann H
    Sci Rep; 2020 May; 10(1):7693. PubMed ID: 32376895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Uroboros Theory of Life's Origin: 22-Nucleotide Theoretical Minimal RNA Rings Reflect Evolution of Genetic Code and tRNA-rRNA Translation Machineries.
    Demongeot J; Seligmann H
    Acta Biotheor; 2019 Dec; 67(4):273-297. PubMed ID: 31388859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of small and large ribosomal RNAs from accretion of tRNA subelements.
    Demongeot J; Seligmann H
    Biosystems; 2022 Dec; 222():104796. PubMed ID: 36306879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical minimal RNA rings mimick molecular evolution before tRNA-mediated translation: codon-amino acid affinities increase from early to late RNA rings.
    Demongeot J; Seligmann H
    C R Biol; 2020 Jun; 343(1):111-122. PubMed ID: 32720493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. More Pieces of Ancient than Recent Theoretical Minimal Proto-tRNA-Like RNA Rings in Genes Coding for tRNA Synthetases.
    Demongeot J; Seligmann H
    J Mol Evol; 2019 Jul; 87(4-6):152-174. PubMed ID: 30953098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA Rings Strengthen Hairpin Accretion Hypotheses for tRNA Evolution: A Reply to Commentaries by Z.F. Burton and M. Di Giulio.
    Demongeot J; Seligmann H
    J Mol Evol; 2020 Apr; 88(3):243-252. PubMed ID: 32025759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The primordial tRNA acceptor stem code from theoretical minimal RNA ring clusters.
    Demongeot J; Seligmann H
    BMC Genet; 2020 Jan; 21(1):7. PubMed ID: 31973715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The lonepair triloop: a new motif in RNA structure.
    Lee JC; Cannone JJ; Gutell RR
    J Mol Biol; 2003 Jan; 325(1):65-83. PubMed ID: 12473452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. tRNA-rRNA sequence homologies: evidence for an ancient modular format shared by tRNAs and rRNAs.
    Bloch DP; McArthur B; Mirrop S
    Biosystems; 1985; 17(3):209-25. PubMed ID: 3888302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical minimal RNA rings designed according to coding constraints mimic deamination gradients.
    Demongeot J; Seligmann H
    Naturwissenschaften; 2019 Jul; 106(7-8):44. PubMed ID: 31267209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous evolution of circular codes in theoretical minimal RNA rings.
    Demongeot J; Seligmann H
    Gene; 2019 Jul; 705():95-102. PubMed ID: 30940527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ribosome as a Missing Link in Prebiotic Evolution III: Over-Representation of tRNA- and rRNA-Like Sequences and Plieofunctionality of Ribosome-Related Molecules Argues for the Evolution of Primitive Genomes from Ribosomal RNA Modules.
    Root-Bernstein R; Root-Bernstein M
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30609737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similarities and differences in tRNA identity between Escherichia coli and Saccharomyces cerevisiae: evolutionary conservation and divergence.
    Nameki N; Asahara H; Tamura K; Himeno H; Hasegawa T; Shimizu M
    Nucleic Acids Symp Ser; 1995; (34):205-6. PubMed ID: 8841624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence and structural conservation in RNA ribose zippers.
    Tamura M; Holbrook SR
    J Mol Biol; 2002 Jul; 320(3):455-74. PubMed ID: 12096903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. tRNA-rRNA sequence homologies: evidence for a common evolutionary origin?
    Bloch DP; McArthur B; Widdowson R; Spector D; Guimaraes RC; Smith J
    J Mol Evol; 1983; 19(6):420-8. PubMed ID: 6361269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Major centers of motion in the large ribosomal RNAs.
    Paci M; Fox GE
    Nucleic Acids Res; 2015 May; 43(9):4640-9. PubMed ID: 25870411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial DNA of the sea anemone, Metridium senile (Cnidaria): prokaryote-like genes for tRNA(f-Met) and small-subunit ribosomal RNA, and standard genetic code specificities for AGR and ATA codons.
    Pont-Kingdon GA; Beagley CT; Okimoto R; Wolstenholme DR
    J Mol Evol; 1994 Oct; 39(4):387-99. PubMed ID: 7966369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary structures of rRNAs from all three domains of life.
    Petrov AS; Bernier CR; Gulen B; Waterbury CC; Hershkovits E; Hsiao C; Harvey SC; Hud NV; Fox GE; Wartell RM; Williams LD
    PLoS One; 2014; 9(2):e88222. PubMed ID: 24505437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution.
    Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R
    J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.