These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 32028)

  • 1. Human skeletal muscle enolase and factors influencing its activity.
    Haralambie G; Reinartz H
    Enzyme; 1978; 23(6):404-9. PubMed ID: 32028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fumarase activity in skeletal muscle of man.
    Haralambie G
    Biomedicine; 1977 Oct; 27(7):255-8. PubMed ID: 588666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme activities in skeletal muscle of 13-15 years old adolescents.
    Haralambie G
    Bull Eur Physiopathol Respir; 1982; 18(1):65-74. PubMed ID: 7053778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creatine kinase and hexose phosphate isomerase activity in skeletal muscles of healthy male adults.
    Haralambie G; Berg A
    Enzyme; 1978; 23(2):104-7. PubMed ID: 639775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of muscle buffer capacity and repeated-sprint ability of untrained, endurance-trained and team-sport athletes.
    Edg E J; Bishop D; Hill-Haas S; Dawson B; Goodman C
    Eur J Appl Physiol; 2006 Feb; 96(3):225-34. PubMed ID: 16235069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between muscle and liver enolases and their behavior during differentiation and growth.
    Asaga H; Konno K
    J Biochem; 1975 Apr; 77(4):867-77. PubMed ID: 238969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation potential in the dominant leg is lower, and [ADPfree] is higher in calf muscles at rest in endurance athletes than in sprinters and in untrained subjects.
    Zoladz JA; Kulinowski P; Zapart-Bukowska J; Grandys M; Majerczak J; Korzeniewski B; Jasiński A
    J Physiol Pharmacol; 2007 Dec; 58(4):803-19. PubMed ID: 18195489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle adaptation to extreme endurance training in man.
    Jansson E; Kaijser L
    Acta Physiol Scand; 1977 Jul; 100(3):315-24. PubMed ID: 144412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunohistochemical demonstration of beta-enolase in human skeletal muscle.
    Ibi T; Sahashi K; Kato K; Takahashi A; Sobue I
    Muscle Nerve; 1983; 6(9):661-3. PubMed ID: 6656839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue distribution, developmental profiles and effect of denervation of enolase isozymes in rat muscles.
    Kato K; Shimizu A; Semba R; Satoh T
    Biochim Biophys Acta; 1985 Jul; 841(1):50-8. PubMed ID: 3893549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of aging on enolase from rat muscle, liver and heart.
    Rothstein M; Coppens M; Sharma HK
    Biochim Biophys Acta; 1980 Aug; 614(2):591-600. PubMed ID: 7407204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle-specific beta-enolase concentrations after cross- and random innervation of soleus and extensor digitorum longus in rats.
    Matsushita H; Yamada S; Satoh T; Kato K; Adachi M
    Exp Neurol; 1986 Jul; 93(1):84-91. PubMed ID: 3732468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human enolase isozymes: electrophoretic and biochemical evidence for three loci.
    Pearce JM; Edwards YH; Harris H
    Ann Hum Genet; 1976 Jan; 39(3):263-76. PubMed ID: 5939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Derivative spectrophotometry of dimer and monomer of enolase.
    Kulig E; Wolny M
    Int J Biochem; 1988; 20(1):79-85. PubMed ID: 3342926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further studies on creatine kinase activity in human skeletal muscle.
    Haralambie G
    Enzyme; 1978; 23(3):182-6. PubMed ID: 738256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exhaustive exercise, endurance training, and acid hydrolase activity in skeletal muscle.
    Vihko V; Salminen A; Rantamäki J
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Jul; 47(1):43-50. PubMed ID: 224020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification, characterization, and distribution of enolase isozymes in chicken.
    Tanaka M; Sugisaki K; Nakashima K
    J Biochem; 1985 Dec; 98(6):1527-34. PubMed ID: 4093440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MyHC II content in the vastus lateralis m. quadricipitis femoris is positively correlated with the magnitude of the non-linear increase in the VO2 / power output relationship in humans.
    Zoladz JA; Duda K; Karasinski J; Majerczak J; Kolodziejski L; Korzeniewski B
    J Physiol Pharmacol; 2002 Dec; 53(4 Pt 2):805-21. PubMed ID: 12510865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of metabolic adaptations between endurance- and sprint-trained athletes after an exhaustive exercise in two different calf muscles using a multi-slice
    Moll K; Gussew A; Nisser M; Derlien S; Krämer M; Reichenbach JR
    NMR Biomed; 2018 Apr; 31(4):e3889. PubMed ID: 29393546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Changes in concentrations of nerve- and muscle-related proteins during reinnervation of slow and fast muscles].
    Matsushita H
    Aichi Gakuin Daigaku Shigakkai Shi; 1989 Jun; 27(2):397-413. PubMed ID: 2637628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.