BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32028059)

  • 1. Young apple polyphenols as natural α-glucosidase inhibitors: In vitro and in silico studies.
    Gong T; Yang X; Bai F; Li D; Zhao T; Zhang J; Sun L; Guo Y
    Bioorg Chem; 2020 Mar; 96():103625. PubMed ID: 32028059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory activity of (-)-epicatechin-3,5-O-digallate on α-glucosidase and in silico analysis.
    Kim JH; Kim HY; Yang SY; Kim JB; Jin CH; Kim YH
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1162-1167. PubMed ID: 28958819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The galloyl moiety enhances the inhibitory activity of catechins and theaflavins against α-glucosidase by increasing the polyphenol-enzyme binding interactions.
    Sun L; Song Y; Chen Y; Ma Y; Fu M; Liu X
    Food Funct; 2021 Jan; 12(1):215-229. PubMed ID: 33295908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between polyphenols in thinned young apples and porcine pancreatic α-amylase: Inhibition, detailed kinetics and fluorescence quenching.
    Sun L; Chen W; Meng Y; Yang X; Yuan L; Guo Y; Warren FJ; Gidley MJ
    Food Chem; 2016 Oct; 208():51-60. PubMed ID: 27132823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of α-glucosidase activity and non-enzymatic glycation by tannic acid: Inhibitory activity and molecular mechanism.
    Huang Q; Chai WM; Ma ZY; Ou-Yang C; Wei QM; Song S; Zou ZR; Peng YY
    Int J Biol Macromol; 2019 Dec; 141():358-368. PubMed ID: 31491512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of binding interactions between young apple polyphenols and porcine pancreatic α-amylase.
    Sun L; Warren FJ; Gidley MJ; Guo Y; Miao M
    Food Chem; 2019 Jun; 283():468-474. PubMed ID: 30722900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Essential moieties of myricetins, quercetins and catechins for binding and inhibitory activity against α-Glucosidase.
    Fu M; Shen W; Gao W; Namujia L; Yang X; Cao J; Sun L
    Bioorg Chem; 2021 Oct; 115():105235. PubMed ID: 34388484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction mechanism between α-glucosidase and A-type trimer procyanidin revealed by integrated spectroscopic analysis techniques.
    Zhao L; Wen L; Lu Q; Liu R
    Int J Biol Macromol; 2020 Jan; 143():173-180. PubMed ID: 31816382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. α-Glucosidase inhibitory effects of polyphenols from Geranium asphodeloides: Inhibition kinetics and mechanistic insights through in vitro and in silico studies.
    Renda G; Sari S; Barut B; Šoral M; Liptaj T; Korkmaz B; Özel A; Erik İ; Şöhretoğlu D
    Bioorg Chem; 2018 Dec; 81():545-552. PubMed ID: 30245236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dihydrochalcone-derived polyphenols from tea crab apple (Malus hupehensis) and their inhibitory effects on α-glucosidase in vitro.
    Lv Q; Lin Y; Tan Z; Jiang B; Xu L; Ren H; Tai WC; Chan CO; Lee CS; Gu Z; Mok DKW; Chen S
    Food Funct; 2019 May; 10(5):2881-2887. PubMed ID: 31070208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of Potentilla inclinata and its polyphenolic compounds in α-glucosidase inhibition: Kinetics and interaction mechanism merged with docking simulations.
    Şöhretoğlu D; Sari S; Šoral M; Barut B; Özel A; Liptaj T
    Int J Biol Macromol; 2018 Mar; 108():81-87. PubMed ID: 29180050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of α-glucosidase activity and intestinal glucose transport to assess the
    Xu Z; Hileuskaya K; Kraskouski A; Yang Y; Huang Z; Zhao Z
    Food Funct; 2024 May; 15(9):4785-4804. PubMed ID: 38511466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization, inhibitory activity and mechanism of polyphenols from faba bean (gallic-acid and catechin) on α-glucosidase: insights from molecular docking and simulation study.
    Choudhary DK; Chaturvedi N; Singh A; Mishra A
    Prep Biochem Biotechnol; 2020; 50(2):123-132. PubMed ID: 31702433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Silico Approaches to Identify Polyphenol Compounds as α-Glucosidase and α-Amylase Inhibitors against Type-II Diabetes.
    Riyaphan J; Pham DC; Leong MK; Weng CF
    Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of interactions between flavan-3-ols against a-glucosidase and their in vivo antihyperglycemic effects.
    Zhang LL; Han L; Yang SY; Meng XM; Ma WF; Wang M
    Bioorg Chem; 2019 Apr; 85():364-372. PubMed ID: 30658236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of α-glucosidase by trilobatin and its mechanism: kinetics, interaction mechanism and molecular docking.
    He M; Zhai Y; Zhang Y; Xu S; Yu S; Wei Y; Xiao H; Song Y
    Food Funct; 2022 Jan; 13(2):857-866. PubMed ID: 34989743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effect of epigallocatechin-3-O-gallate on α-glucosidase and its hypoglycemic effect via targeting PI3K/AKT signaling pathway in L6 skeletal muscle cells.
    Xu L; Li W; Chen Z; Guo Q; Wang C; Santhanam RK; Chen H
    Int J Biol Macromol; 2019 Mar; 125():605-611. PubMed ID: 30529552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of inhibitory interaction between epigallocatechin gallate and alpha-glucosidase: A spectroscopy and molecular simulation study.
    Dai T; Li T; He X; Li X; Liu C; Chen J; McClements DJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118023. PubMed ID: 31927512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in silico inhibition properties of fucoidan against α-amylase and α-D-glucosidase with relevance to type 2 diabetes mellitus.
    S LS; Raghu C; H A A; P A
    Carbohydr Polym; 2019 Apr; 209():350-355. PubMed ID: 30732817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Number of galloyl moiety and intramolecular bonds in galloyl-based polyphenols affect their interaction with alpha-glucosidase.
    Cao J; Yan S; Xiao Y; Han L; Sun L; Wang M
    Food Chem; 2022 Jan; 367():129846. PubMed ID: 34399273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.