BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 32028102)

  • 1. Modelling of material recovery from waste incineration bottom ash.
    Huber F
    Waste Manag; 2020 Mar; 105():61-72. PubMed ID: 32028102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray fluorescence sorting of non-ferrous metal fractions from municipal solid waste incineration bottom ash processing depending on particle surface properties.
    Pfandl K; Küppers B; Scheiber S; Stockinger G; Holzer J; Pomberger R; Antrekowitsch H; Vollprecht D
    Waste Manag Res; 2020 Feb; 38(2):111-121. PubMed ID: 31621535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.
    Funari V; Braga R; Bokhari SN; Dinelli E; Meisel T
    Waste Manag; 2015 Nov; 45():206-16. PubMed ID: 25512234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.
    Allegrini E; Vadenbo C; Boldrin A; Astrup TF
    J Environ Manage; 2015 Mar; 151():132-43. PubMed ID: 25555136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?
    Sormunen LA; Rantsi R
    Waste Manag Res; 2015 Nov; 33(11):995-1004. PubMed ID: 26330401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete determination of the material composition of municipal solid waste incineration bottom ash.
    Huber F; Blasenbauer D; Aschenbrenner P; Fellner J
    Waste Manag; 2020 Feb; 102():677-685. PubMed ID: 31790926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The environmental performance of enhanced metal recovery from dry municipal solid waste incineration bottom ash.
    Mehr J; Haupt M; Skutan S; Morf L; Raka Adrianto L; Weibel G; Hellweg S
    Waste Manag; 2021 Jan; 119():330-341. PubMed ID: 33125941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany.
    Holm O; Simon FG
    Waste Manag; 2017 Jan; 59():229-236. PubMed ID: 27625178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fate of heavy metals and salts during the wet treatment of municipal solid waste incineration bottom ash.
    Hu Y; Zhao L; Zhu Y; Zhang B; Hu G; Xu B; He C; Di Maio F
    Waste Manag; 2021 Feb; 121():33-41. PubMed ID: 33341692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical composition and leachability of differently sized material fractions of municipal solid waste incineration bottom ash.
    Huber F; Blasenbauer D; Aschenbrenner P; Fellner J
    Waste Manag; 2019 Jul; 95():593-603. PubMed ID: 31351646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and mechanical removal of metallic aluminum (Al) embedded in weathered municipal solid waste incineration (MSWI) bottom ash for application as supplementary cementitious material.
    Chen B; Chen J; de Mendonça Filho FF; Sun Y; van Zijl MB; Copuroglu O; Ye G
    Waste Manag; 2024 Mar; 176():128-139. PubMed ID: 38281344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases.
    Wei Y; Shimaoka T; Saffarzadeh A; Takahashi F
    J Hazard Mater; 2011 Mar; 187(1-3):534-43. PubMed ID: 21316147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal distribution characteristic of MSWI bottom ash in view of metal recovery.
    Xia Y; He P; Shao L; Zhang H
    J Environ Sci (China); 2017 Feb; 52():178-189. PubMed ID: 28254036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the quantity and quality of glass, metals, and minerals present in waste incineration bottom ashes from a fluidized bed and a grate incinerator.
    Blasenbauer D; Huber F; Mühl J; Fellner J; Lederer J
    Waste Manag; 2023 Apr; 161():142-155. PubMed ID: 36878041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.
    Ribé V; Nehrenheim E; Odlare M
    Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.
    Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T
    J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification and categorization of treatment methods for ash generated by municipal solid waste incineration: a case for the 2 greater metropolitan regions of Greece.
    Karagiannidis A; Kontogianni S; Logothetis D
    Waste Manag; 2013 Feb; 33(2):363-72. PubMed ID: 23206519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan.
    Jung CH; Matsuto T; Tanaka N; Okada T
    Waste Manag; 2004; 24(4):381-91. PubMed ID: 15081066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of enhanced metal recovery on the recycling potential of MSWI bottom ash fractions in various legal frameworks.
    Glauser A; Weibel G; Eggenberger U
    Waste Manag Res; 2021 Dec; 39(12):1459-1470. PubMed ID: 34407717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.