BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 32028191)

  • 21. Efferent-induced shifts in synchronized-spontaneous-otoacoustic-emission magnitude and frequency.
    Lewis JD
    J Acoust Soc Am; 2020 Nov; 148(5):3258. PubMed ID: 33261385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Clinically Viable Medial Olivocochlear Reflex Assay Using Transient-Evoked Otoacoustic Emissions.
    Lapsley Miller JA; Reed CM; Marshall L; Perez ZD; Villabona T
    Ear Hear; 2024 Jan-Feb 01; 45(1):115-129. PubMed ID: 37475147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions.
    Putterman DB; Keefe DH; Hunter LL; Garinis AC; Fitzpatrick DF; McMillan GP; Feeney MP
    Ear Hear; 2017; 38(4):507-520. PubMed ID: 28437273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Changes in transient evoked otoacoustic emissions contralateral suppression in infants].
    Durante AS; Carvallo RM
    Pro Fono; 2006; 18(1):49-56. PubMed ID: 16625871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slow build-up of cochlear suppression during sustained contralateral noise: central modulation of olivocochlear efferents?
    Larsen E; Liberman MC
    Hear Res; 2009 Oct; 256(1-2):1-10. PubMed ID: 19232534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Effect of Otoacoustic Emission Stimulus Level on the Strength and Detectability of the Medial Olivocochlear Reflex.
    Lewis JD
    Ear Hear; 2019; 40(6):1391-1403. PubMed ID: 30896525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lack of correlation between medial olivocochlear reflex strength and sentence recognition in noise.
    Mertes IB; Stutz AL
    Int J Audiol; 2023 Feb; 62(2):110-117. PubMed ID: 35195043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of the medial olivocochlear efferent system in children. pure tone 1.0 kHz and 2.0 kHz suppressive effects on transient evoked otoacoustic emission.
    Morawski K; Namyslowski G; Kossowska I; Lisowska G; Urbaniec P
    Scand Audiol Suppl; 2001; (52):112-5. PubMed ID: 11318438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the Relationship Between Musicianship and Contralateral Suppression of Transient-Evoked Otoacoustic Emissions.
    Stuart A; Daughtrey ER
    J Am Acad Audiol; 2016 Apr; 27(4):333-44. PubMed ID: 27115243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of contralateral acoustic stimulation on spontaneous otoacoustic emissions.
    Zhao W; Dhar S
    J Assoc Res Otolaryngol; 2010 Mar; 11(1):53-67. PubMed ID: 19798532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frequency specificity and left-ear advantage of medial olivocochlear efferent modulation: a study based on stimulus frequency otoacoustic emission.
    Xing D; Gong Q
    Neuroreport; 2017 Sep; 28(13):775-778. PubMed ID: 28538522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repeatability of click-evoked otoacoustic emission-based medial olivocochlear efferent assay.
    Mishra SK; Lutman ME
    Ear Hear; 2013; 34(6):789-98. PubMed ID: 23739244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contralateral suppression of transient evoked otoacoustic emissions in patients with cerebello-pontine angle tumor.
    Ferguson MA; O'Donoghue GM; Owen V
    Ear Hear; 2001 Jun; 22(3):173-81. PubMed ID: 11409853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Otoacoustic emissions and medial olivocochlear suppression during auditory recovery from acoustic trauma in humans.
    Veuillet E; Martin V; Suc B; Vesson JF; Morgon A; Collet L
    Acta Otolaryngol; 2001 Jan; 121(2):278-83. PubMed ID: 11349796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Olivocochlear efferent vs. middle-ear contributions to the alteration of otoacoustic emissions by contralateral noise.
    Büki B; Wit HP; Avan P
    Brain Res; 2000 Jan; 852(1):140-50. PubMed ID: 10661505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tone burst evoked otoacoustic emissions in different age-groups of schoolchildren.
    Jedrzejczak WW; Pilka E; Skarzynski PH; Olszewski L; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2015 Aug; 79(8):1310-5. PubMed ID: 26092548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnitude of medial olivocochlear reflex assayed by tone-burst-evoked otoacoustic emissions: reliability and comparison with click-evoked emissions.
    Jedrzejczak WW; Pilka E; Pastucha M; Skarzynski H; Kochanek K
    Int J Audiol; 2024 May; 63(5):293-299. PubMed ID: 37129585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Concurrent measures of contralateral suppression of transient-evoked otoacoustic emissions and of auditory steady-state responses.
    Mertes IB; Leek MR
    J Acoust Soc Am; 2016 Sep; 140(3):2027. PubMed ID: 27914370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Otoacoustic-emission-based medial-olivocochlear reflex assays for humans.
    Marshall L; Lapsley Miller JA; Guinan JJ; Shera CA; Reed CM; Perez ZD; Delhorne LA; Boege P
    J Acoust Soc Am; 2014 Nov; 136(5):2697-713. PubMed ID: 25373970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.