BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32028214)

  • 1. Selective carbon sources and salinities enhance enzymes and extracellular polymeric substances extrusion of Chlorella sp. for potential co-metabolism.
    Vo HNP; Ngo HH; Guo W; Liu Y; Woong Chang S; Nguyen DD; Zhang X; Liang H; Xue S
    Bioresour Technol; 2020 May; 303():122877. PubMed ID: 32028214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micropollutants cometabolism of microalgae for wastewater remediation: Effect of carbon sources to cometabolism and degradation products.
    Vo HNP; Ngo HH; Guo W; Nguyen KH; Chang SW; Nguyen DD; Liu Y; Liu Y; Ding A; Bui XT
    Water Res; 2020 Sep; 183():115974. PubMed ID: 32652348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous harvesting and extracellular polymeric substances extrusion of microalgae using surfactant: Promoting surfactant-assisted flocculation through pH adjustment.
    Taghavijeloudar M; Kebria DY; Yaqoubnejad P
    Bioresour Technol; 2021 Jan; 319():124224. PubMed ID: 33254453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of calcium peroxide pretreatment on the remediation of sulfonamide antibiotics (SMs) by Chlorella sp.
    Vo HNP; Ngo HH; Guo W; Nguyen KH; Chang SW; Nguyen DD; Cheng D; Bui XT; Liu Y; Zhang X
    Sci Total Environ; 2021 Nov; 793():148598. PubMed ID: 34328983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic co-digestion of microalgae Chlorella sp. and waste activated sludge.
    Wang M; Sahu AK; Rusten B; Park C
    Bioresour Technol; 2013 Aug; 142():585-90. PubMed ID: 23770998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of illumination on distribution of phosphorus in Chlorella vulgaris under mixotrophic cultivation.
    Xing Y; Guo L; Wang Y; Jin C; Gao M; Zhao Y; She Z
    Chemosphere; 2022 Sep; 303(Pt 1):134904. PubMed ID: 35561784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures.
    Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An auto-flocculation strategy for Chlorella vulgaris.
    Shen Y; Fan Z; Chen C; Xu X
    Biotechnol Lett; 2015 Jan; 37(1):75-80. PubMed ID: 25208747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition.
    Lin TS; Wu JY
    Bioresour Technol; 2015 May; 184():100-107. PubMed ID: 25443671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa.
    Zhang J; Zhou F; Liu Y; Huang F; Zhang C
    Sci Total Environ; 2020 Feb; 704():135368. PubMed ID: 31831249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution.
    Li D; Wang L; Zhao Q; Wei W; Sun Y
    Bioresour Technol; 2015 Jun; 185():269-75. PubMed ID: 25776894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial community enhances flocculation efficiency of Ettlia sp. by altering extracellular polymeric substances profile.
    Vu CHT; Chun SJ; Seo SH; Cui Y; Ahn CY; Oh HM
    Bioresour Technol; 2019 Jun; 281():56-65. PubMed ID: 30797175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon dioxide (CO
    Kassim MA; Meng TK
    Sci Total Environ; 2017 Apr; 584-585():1121-1129. PubMed ID: 28169025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular polymeric substances altered the physicochemical properties of molybdenum disulfide nanomaterials to mitigate its toxicity to Chlorella vulgaris.
    Cao M; Yang D; Wang F; Zhou B; Chen H; Yuan R; Sun K
    NanoImpact; 2023 Oct; 32():100485. PubMed ID: 37778438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cultivation of different microalgae with pentose as carbon source and the effects on the carbohydrate content.
    de Freitas BCB; Brächer EH; de Morais EG; Atala DIP; de Morais MG; Costa JAV
    Environ Technol; 2019 Mar; 40(8):1062-1070. PubMed ID: 29251249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae.
    Zhang L; Pei H; Chen S; Jiang L; Hou Q; Yang Z; Yu Z
    Bioresour Technol; 2018 Feb; 250():449-456. PubMed ID: 29197271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-feeding among microalgae facilitates nitrogen recovery at low C/N.
    Kong L; Feng Y; Sun J; Rong K; Zhou J; Zheng R; Ni S; Liu S
    Environ Res; 2022 Aug; 211():113052. PubMed ID: 35276187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoting Chlorella photosynthesis and bioresource production using directionally prepared carbon dots with tunable emission.
    Xue R; Fu L; Dong S; Yang H; Zhou D
    J Colloid Interface Sci; 2020 Jun; 569():195-203. PubMed ID: 32113016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Astaxanthin production by freshwater microalgae Chlorella sorokiniana and marine microalgae Tetraselmis sp.
    Raman R; Mohamad SE
    Pak J Biol Sci; 2012 Dec; 15(24):1182-6. PubMed ID: 23755409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ability of an alkali-tolerant mutant strain of the microalga Chlorella sp. AT1 to capture carbon dioxide for increasing carbon dioxide utilization efficiency.
    Kuo CM; Lin TH; Yang YC; Zhang WX; Lai JT; Wu HT; Chang JS; Lin CS
    Bioresour Technol; 2017 Nov; 244(Pt 1):243-251. PubMed ID: 28780257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.