BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 3202830)

  • 1. Kinetic analysis of the cerebral creatine kinase reaction under hypoxic and hypoglycaemic conditions in vitro. A 31P-n.m.r. study.
    Cox DW; Morris PG; Bachelard HS
    Biochem J; 1988 Oct; 255(2):523-7. PubMed ID: 3202830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pH and inorganic phosphate on creatine kinase inactivation: an in vitro 31P NMR saturation-transfer study.
    Williams GD; Enders B; Smith MB
    Biochem Int; 1992 Feb; 26(1):35-42. PubMed ID: 1616495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 31P-saturation-transfer nuclear-magnetic-resonance measurements of phosphocreatine turnover in guinea-pig brain slices.
    Morris PG; Feeney J; Cox DW; Bachelard HS
    Biochem J; 1985 May; 227(3):777-82. PubMed ID: 4004799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [ATP-phosphocreatine metabolism catalyzed by creatine kinase. Comparison of saturation transfer (NMR) and isotope labeling technics].
    Kupriianov VV; Liulina NV; Shteĭnshneĭder AIa; Zueva MIu; Saks VA
    Bioorg Khim; 1987 Mar; 13(3):300-8. PubMed ID: 3593427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relation between pO2, 31P magnetic resonance spectroscopy parameters and treatment outcome in patients with high-grade soft tissue sarcomas treated with thermoradiotherapy.
    Dewhirst MW; Poulson JM; Yu D; Sanders L; Lora-Michiels M; Vujaskovic Z; Jones EL; Samulski TV; Powers BE; Brizel DM; Prosnitz LR; Charles HC
    Int J Radiat Oncol Biol Phys; 2005 Feb; 61(2):480-91. PubMed ID: 15667971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic changes in Japanese medaka (Oryzias latipes) during embryogenesis and hypoxia as determined by in vivo 31P NMR.
    Pincetich CA; Viant MR; Hinton DE; Tjeerdema RS
    Comp Biochem Physiol C Toxicol Pharmacol; 2005 Jan; 140(1):103-13. PubMed ID: 15792629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of coenzyme Q10 and vitamin E on brain energy metabolism in the animal model of Huntington's disease.
    Kasparová S; Sumbalová Z; Bystrický P; Kucharská J; Liptaj T; Mlynárik V; Gvozdjáková A
    Neurochem Int; 2006 Jan; 48(2):93-9. PubMed ID: 16290265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 31P-n.m.r. studies on cerebral energy metabolism under conditions of hypoglycaemia and hypoxia in vitro.
    Cox DW; Morris PG; Feeney J; Bachelard HS
    Biochem J; 1983 May; 212(2):365-70. PubMed ID: 6882378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain high energy phosphate responses to alcohol exposure in neonatal rats: an in vivo 31P-NMR study.
    Cudd TA; Wasser JS; Chen WJ; West JR
    Alcohol Clin Exp Res; 2000 Jun; 24(6):865-72. PubMed ID: 10888076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Regulation of the activity of brain cytoplasmic creatine kinase by pyridine nucleotides].
    Khvatova EM; Semenova TS
    Vopr Med Khim; 1991; 37(4):31-3. PubMed ID: 1750206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of creatine kinase kinetic parameters in rat brain by NMR magnetization transfer. Correlation with brain function.
    Sauter A; Rudin M
    J Biol Chem; 1993 Jun; 268(18):13166-71. PubMed ID: 8514755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro determination of creatine kinase substrate fluxes using 31P-nuclear magnetic resonance.
    Conrad A; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1995 Jan; 1243(1):117-23. PubMed ID: 7827099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral creatine kinase deficiency influences metabolite levels and morphology in the mouse brain: a quantitative in vivo 1H and 31P magnetic resonance study.
    in 't Zandt HJ; Renema WK; Streijger F; Jost C; Klomp DW; Oerlemans F; Van der Zee CE; Wieringa B; Heerschap A
    J Neurochem; 2004 Sep; 90(6):1321-30. PubMed ID: 15341516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of hyperglycemia on cerebral metabolism during hypoxia-ischemia in the immature rat.
    Vannucci RC; Brucklacher RM; Vannucci SJ
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):1026-33. PubMed ID: 8784248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transsarcolemmal movement of inorganic phosphate in glucose-perfused rat heart: a 31P nuclear magnetic resonance spectroscopic study.
    Polgreen KE; Kemp GJ; Clarke K; Radda GK
    J Mol Cell Cardiol; 1994 Feb; 26(2):219-28. PubMed ID: 8006983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study.
    Degani H; Laughlin M; Campbell S; Shulman RG
    Biochemistry; 1985 Sep; 24(20):5510-6. PubMed ID: 4074712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging of human brain creatine kinase activity in vivo.
    Cadoux-Hudson TA; Blackledge MJ; Radda GK
    FASEB J; 1989 Dec; 3(14):2660-6. PubMed ID: 2629743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain creatine kinase with aging in F-344 rats: analysis by saturation transfer magnetic resonance spectroscopy.
    Smith CD; Landrum W; Carney JM; Landfield PW; Avison MJ
    Neurobiol Aging; 1997; 18(6):617-22. PubMed ID: 9461059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of creatine uptake in the perfused mouse liver: a 31P-n.m.r. study of transgenic mice expressing creatine kinase (CKBB) in the liver.
    Masson S; Quistorff B
    Biochem J; 1994 Oct; 303 ( Pt 2)(Pt 2):531-8. PubMed ID: 7980414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative metabolism, apoptosis and perinatal brain injury.
    Taylor DL; Edwards AD; Mehmet H
    Brain Pathol; 1999 Jan; 9(1):93-117. PubMed ID: 9989454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.