BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32028540)

  • 1. An Automatable Hydrogel Culture Platform for Evaluating Efficacy of Antibody-Based Therapeutics in Overcoming Chemoresistance.
    Kletzmayr A; Clement Frey F; Zimmermann M; Eberli D; Millan C
    Biotechnol J; 2020 May; 15(5):e1900439. PubMed ID: 32028540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a high throughput impedimetric screening of chemosensitivity of cancer cells suspended in hydrogel and cultured in a paper substrate.
    Lei KF; Liu TK; Tsang NM
    Biosens Bioelectron; 2018 Feb; 100():355-360. PubMed ID: 28946107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta-hairpin hydrogels as scaffolds for high-throughput drug discovery in three-dimensional cell culture.
    Worthington P; Drake KM; Li Z; Napper AD; Pochan DJ; Langhans SA
    Anal Biochem; 2017 Oct; 535():25-34. PubMed ID: 28757092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment.
    Li X; Zhang X; Zhao S; Wang J; Liu G; Du Y
    Lab Chip; 2014 Feb; 14(3):471-81. PubMed ID: 24287736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities.
    Lan SF; Starly B
    Toxicol Appl Pharmacol; 2011 Oct; 256(1):62-72. PubMed ID: 21839104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic assembly of hydrogel-based immunogenic tumor spheroids for evaluation of anticancer therapies and biomarker release.
    Sabhachandani P; Sarkar S; Mckenney S; Ravi D; Evens AM; Konry T
    J Control Release; 2019 Feb; 295():21-30. PubMed ID: 30550941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional culture and clinical drug responses of a highly metastatic human ovarian cancer HO-8910PM cells in nanofibrous microenvironments of three hydrogel biomaterials.
    Song H; Cai GH; Liang J; Ao DS; Wang H; Yang ZH
    J Nanobiotechnology; 2020 Jun; 18(1):90. PubMed ID: 32527266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation.
    Singh M; Close DA; Mukundan S; Johnston PA; Sant S
    Assay Drug Dev Technol; 2015 Nov; 13(9):570-83. PubMed ID: 26274587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automation of 3D cell culture using chemically defined hydrogels.
    Rimann M; Angres B; Patocchi-Tenzer I; Braum S; Graf-Hausner U
    J Lab Autom; 2014 Apr; 19(2):191-7. PubMed ID: 24132162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening.
    Chen MC; Gupta M; Cheung KC
    Biomed Microdevices; 2010 Aug; 12(4):647-54. PubMed ID: 20237849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells.
    Loessner D; Stok KS; Lutolf MP; Hutmacher DW; Clements JA; Rizzi SC
    Biomaterials; 2010 Nov; 31(32):8494-506. PubMed ID: 20709389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids.
    Kang J; Lee DW; Hwang HJ; Yeon SE; Lee MY; Kuh HJ
    Lab Chip; 2016 Jun; 16(12):2265-76. PubMed ID: 27194205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment and characterization of an in vitro 3D ovarian cancer model for drug screening assays.
    Tofani LB; Abriata JP; Luiz MT; Marchetti JM; Swiech K
    Biotechnol Prog; 2020 Nov; 36(6):e3034. PubMed ID: 32519461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Cultures of prostate cancer cells cultured in a novel high-throughput culture platform are more resistant to chemotherapeutics compared to cells cultured in monolayer.
    Chambers KF; Mosaad EM; Russell PJ; Clements JA; Doran MR
    PLoS One; 2014; 9(11):e111029. PubMed ID: 25380249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance.
    Breslin S; O'Driscoll L
    Oncotarget; 2016 Jul; 7(29):45745-45756. PubMed ID: 27304190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Culture of Mesenchymal Stem Cells in Alginate Hydrogels.
    Bidarra SJ; Barrias CC
    Methods Mol Biol; 2019; 2002():165-180. PubMed ID: 30244438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening.
    Wang JZ; Zhu YX; Ma HC; Chen SN; Chao JY; Ruan WD; Wang D; Du FG; Meng YZ
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():215-25. PubMed ID: 26952417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemoresistance of Lung and Breast Cancer Cells Growing Under Prolonged Periods of Serum Starvation.
    Yakisich JS; Venkatadri R; Azad N; Iyer AKV
    J Cell Physiol; 2017 Aug; 232(8):2033-2043. PubMed ID: 27504932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Hydrogel Cultures for High-Throughput Drug Discovery.
    Sperle K; Pochan DJ; Langhans SA
    Methods Mol Biol; 2023; 2614():369-381. PubMed ID: 36587136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.