These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32028548)

  • 21. Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As(V), sulfate, and Fe(III).
    Rios-Valenciana EE; Briones-Gallardo R; Chazaro-Ruiz LF; Lopez-Lozano NE; Sierra-Alvarez R; Celis LB
    Chemosphere; 2020 Jan; 239():124823. PubMed ID: 31726520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of Coprecipitated Organic Matter on Fe2+(aq)-Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics.
    Chen C; Kukkadapu R; Sparks DL
    Environ Sci Technol; 2015 Sep; 49(18):10927-36. PubMed ID: 26260047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uranium incorporation into aluminum-substituted ferrihydrite during iron(ii)-induced transformation.
    Massey MS; Lezama-Pacheco JS; Michel FM; Fendorf S
    Environ Sci Process Impacts; 2014 Sep; 16(9):2137-44. PubMed ID: 25124142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox transformation of soil minerals and arsenic in arsenic-contaminated soil under cycling redox conditions.
    Han YS; Park JH; Kim SJ; Jeong HY; Ahn JS
    J Hazard Mater; 2019 Oct; 378():120745. PubMed ID: 31203129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of amorphous Fe(III) oxide transformation on the Fe(II)-mediated reduction of U(VI).
    Boland DD; Collins RN; Payne TE; Waite TD
    Environ Sci Technol; 2011 Feb; 45(4):1327-33. PubMed ID: 21210678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of Redox Reactions on Colloid Transport in Saturated Porous Media: An Example of Ferrihydrite Colloids Transport in the Presence of Sulfide.
    Liao P; Yuan S; Wang D
    Environ Sci Technol; 2016 Oct; 50(20):10968-10977. PubMed ID: 27654458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sorption behavior of U(VI) on phyllite: experiments and modeling.
    Arnold T; Zorn T; Zänker H; Bernhard G; Nitsche H
    J Contam Hydrol; 2001 Feb; 47(2-4):219-31. PubMed ID: 11288578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite.
    Boland DD; Collins RN; Miller CJ; Glover CJ; Waite TD
    Environ Sci Technol; 2014 May; 48(10):5477-85. PubMed ID: 24724707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient catalytic As(III) oxidation on the surface of ferrihydrite in the presence of aqueous Mn(II).
    Lan S; Ying H; Wang X; Liu F; Tan W; Huang Q; Zhang J; Feng X
    Water Res; 2018 Jan; 128():92-101. PubMed ID: 29091808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterising microbial reduction of arsenate sorbed to ferrihydrite and its concurrence with iron reduction.
    Huang JH
    Chemosphere; 2018 Mar; 194():49-56. PubMed ID: 29197249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate.
    Sharma P; Kappler A
    J Contam Hydrol; 2011 Nov; 126(3-4):216-25. PubMed ID: 22115087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fe(II)-Catalyzed Transformation of Organic Matter-Ferrihydrite Coprecipitates: A Closer Look Using Fe Isotopes.
    Zhou Z; Latta DE; Noor N; Thompson A; Borch T; Scherer MM
    Environ Sci Technol; 2018 Oct; 52(19):11142-11150. PubMed ID: 30189730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioaccessibility of arsenic(V) bound to ferrihydrite using a simulated gastrointestinal system.
    Beak DG; Basta NT; Scheckel KG; Traina SJ
    Environ Sci Technol; 2006 Feb; 40(4):1364-70. PubMed ID: 16572798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model-Based Analysis of Arsenic Immobilization via Iron Mineral Transformation under Advective Flows.
    Sun J; Prommer H; Siade AJ; Chillrud SN; Mailloux BJ; Bostick BC
    Environ Sci Technol; 2018 Aug; 52(16):9243-9253. PubMed ID: 30039966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methyl arsenic adsorption and desorption behavior on iron oxides.
    Lafferty BJ; Loeppert RH
    Environ Sci Technol; 2005 Apr; 39(7):2120-7. PubMed ID: 15871246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of Cd(ii) adsorption and desorption on ferrihydrite: experiments and modeling.
    Liang Y; Tian L; Lu Y; Peng L; Wang P; Lin J; Cheng T; Dang Z; Shi Z
    Environ Sci Process Impacts; 2018 Jun; 20(6):934-942. PubMed ID: 29761198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ferrihydrite Growth and Transformation in the Presence of Ferrous Iron and Model Organic Ligands.
    ThomasArrigo LK; Kaegi R; Kretzschmar R
    Environ Sci Technol; 2019 Dec; 53(23):13636-13647. PubMed ID: 31718167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic and modeling insights into the immobilization of Cd and organic carbon during abiotic transformation of ferrihydrite induced by Fe(II).
    Shen X; Zhu H; Wang P; Zheng L; Hu S; Liu C
    J Hazard Mater; 2022 Aug; 436():129216. PubMed ID: 35739738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decoupling of arsenic and iron release from ferrihydrite suspension under reducing conditions: a biogeochemical model.
    Burnol A; Garrido F; Baranger P; Joulian C; Dictor MC; Bodénan F; Morin G; Charlet L
    Geochem Trans; 2007 Nov; 8():12. PubMed ID: 18047666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.