These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32028693)

  • 1. Evaluating the Vulnerability of Several Geodetic GNSS Receivers under Chirp Signal L1/E1 Jamming.
    Bažec M; Dimc F; Pavlovčič-Prešeren P
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32028693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparative Analysis of the Response of GNSS Receivers under Vertical and Horizontal L1/E1 Chirp Jamming.
    Pavlovčič-Prešeren P; Dimc F; Bažec M
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robustness against Chirp Signal Interference of On-Board Vehicle Geodetic and Low-Cost GNSS Receivers.
    Dimc F; Pavlovčič-Prešeren P; Bažec M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of GNSS Carrier Phase Data on a Moving Zero-Baseline in Urban and Aerial Navigation.
    Ruwisch F; Jain A; Schön S
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced GNSS Reliability on High-Dynamic Platforms: A Comparative Study of Multi-Frequency, Multi-Constellation Signals in Jamming Environments.
    Elmezayen A; Karaim M; Elghamrawy H; Noureldin A
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm.
    Reuper B; Becker M; Leinen S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Cost Dual-Frequency GNSS Receivers and Antennas for Surveying in Urban Areas.
    Hamza V; Stopar B; Sterle O; Pavlovčič-Prešeren P
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the potential of Galileo E5 for time transfer.
    Martínez-Belda MC; Defraigne P; Bruyninx C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):121-31. PubMed ID: 23287919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of Global Navigation Satellite System Receivers' Accuracy for Unmanned Vehicles.
    Miletiev R; Petkov PZ; Yordanov R; Brusev T
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing the Performance of Multi-Frequency Low-Cost GNSS Receivers and Antennas.
    Hamza V; Stopar B; Sterle O
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a Low Cost Hand Held Unit with GNSS Raw Data Capability and Comparison with an Android Smartphone.
    Lachapelle G; Gratton P; Horrelt J; Lemieux E; Broumandan A
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30501082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic Zenith Tropospheric Delay Estimation with GNSS PPP in Mountainous Areas.
    Gratton P; Banville S; Lachapelle G; O'Keefe K
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intense L-Band Solar Radio Bursts Detection Based on GNSS Carrier-To-Noise Ratio Decrease over Multi-Satellite and Multi-Station.
    Yang F; Zhu X; Chen X; Lin M
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NaviSoC: High-Accuracy Low-Power GNSS SoC with an Integrated Application Processor.
    Borejko T; Marcinek K; Siwiec K; Narczyk P; Borkowski A; Butryn I; Łuczyk A; Pietroń D; Plasota M; Reszewicz S; Wiechowski Ł; Pleskacz WA
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Low-Cost GNSS Receiver under Demanding Conditions in RTK Network Mode.
    Janos D; Kuras P
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of Consumer Grade GNSS Receivers for the Integration in Multi-Sensor-Systems.
    Kersten T; Paffenholz JA
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32357583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing Multi-Frequency Low-Cost GNSS Receivers for Geodetic Monitoring Purposes.
    Hamza V; Stopar B; Ambrožič T; Turk G; Sterle O
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Baseline RTK Positioning Using Dual-Frequency GNSS Receivers Inside Smartphones.
    Dabove P; Di Pietra V
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31590234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GNSS Multipath Detection Using Continuous Time-Series C/N
    Kubo N; Kobayashi K; Furukawa R
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derivation of the Cramér-Rao Bound in the GNSS-Reflectometry Context for Static, Ground-Based Receivers in Scenarios with Coherent Reflection.
    Ribot MA; Botteron C; Farine PA
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27929388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.