These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32028710)

  • 1. Responses of Periphyton Microbial Growth, Activity, and Pollutant Removal Efficiency to Cu Exposure.
    Zhong W; Zhao W; Song J
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32028710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremediation of agricultural solid waste leachates with diverse species of Cu (II) and Cd (II) by periphyton.
    Yang J; Liu J; Wu C; Kerr PG; Wong PK; Wu Y
    Bioresour Technol; 2016 Dec; 221():214-221. PubMed ID: 27639674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of temperature in pollution-induced community tolerance approaches used to assess effects of copper on freshwater phototrophic periphyton.
    Lambert AS; Dabrin A; Foulquier A; Morin S; Rosy C; Coquery M; Pesce S
    Sci Total Environ; 2017 Dec; 607-608():1018-1025. PubMed ID: 28724220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-contamination of Cu and Cd in paddy fields: Using periphyton to entrap heavy metals.
    Yang J; Tang C; Wang F; Wu Y
    J Hazard Mater; 2016 Mar; 304():150-8. PubMed ID: 26551219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater.
    Kamika I; Momba MN
    BMC Microbiol; 2013 Feb; 13():28. PubMed ID: 23387904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Damage of heavy metals to Vallisneria natans (V. natans) and characterization of microbial community in biofilm.
    Huang S; Song Q; Li Q; Zhang H; Luo X; Zheng Z
    Aquat Toxicol; 2020 Aug; 225():105515. PubMed ID: 32516672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox zones stratification and the microbial community characteristics in a periphyton bioreactor.
    Liu J; Liu W; Wang F; Kerr P; Wu Y
    Bioresour Technol; 2016 Mar; 204():114-121. PubMed ID: 26773955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper accumulation and toxicity in fluvial periphyton: the influence of exposure history.
    Serra A; Corcoll N; Guasch H
    Chemosphere; 2009 Feb; 74(5):633-41. PubMed ID: 19081601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper.
    Miran W; Jang J; Nawaz M; Shahzad A; Jeong SE; Jeon CO; Lee DS
    Chemosphere; 2017 Dec; 189():134-142. PubMed ID: 28934653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of industrial wastewater using four hydrophyte species: A comparison of individual (pot experiments) and mix plants (constructed wetland).
    Ayaz T; Khan S; Khan AZ; Lei M; Alam M
    J Environ Manage; 2020 Feb; 255():109833. PubMed ID: 31747629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The behavior of organic phosphorus under non-point source wastewater in the presence of phototrophic periphyton.
    Lu H; Yang L; Zhang S; Wu Y
    PLoS One; 2014; 9(1):e85910. PubMed ID: 24465782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature modulates phototrophic periphyton response to chronic copper exposure.
    Lambert AS; Dabrin A; Morin S; Gahou J; Foulquier A; Coquery M; Pesce S
    Environ Pollut; 2016 Jan; 208(Pt B):821-9. PubMed ID: 26608872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the function of extracellular polymeric substances (EPS) in denitrifying phosphorus removal sludge in the presence of copper ion.
    Wang Y; Qin J; Zhou S; Lin X; Ye L; Song C; Yan Y
    Water Res; 2015 Apr; 73():252-64. PubMed ID: 25697691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption of high-concentration Cu (II) by periphytic biofilms and the development of a fiber periphyton bioreactor (FPBR).
    Liu J; Wang F; Wu W; Wan J; Yang J; Xiang S; Wu Y
    Bioresour Technol; 2018 Jan; 248(Pt B):127-134. PubMed ID: 28634126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland.
    Rana V; Maiti SK
    Environ Monit Assess; 2018 May; 190(6):328. PubMed ID: 29730705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chronic copper exposure on fluvial systems: linking structural and physiological changes of fluvial biofilms with the in-stream copper retention.
    Serra A; Guasch H
    Sci Total Environ; 2009 Sep; 407(19):5274-82. PubMed ID: 19646733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Periphyton and its application in water purification].
    Chen CJ; Han ZY; Zhu YM; Wu WX
    Ying Yong Sheng Tai Xue Bao; 2009 Nov; 20(11):2820-6. PubMed ID: 20136022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of Yarrowia lipolytica via metabolic engineering for effective remediation of heavy metals from wastewater.
    Yang K; Zhao G; Li H; Tian X; Xu L; Yan J; Xie X; Yan Y; Yang M
    J Hazard Mater; 2024 Sep; 476():134954. PubMed ID: 38936184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial characterization of heavy metal resistant bacterial strains isolated from an electroplating wastewater treatment plant.
    Cai X; Zheng X; Zhang D; Iqbal W; Liu C; Yang B; Zhao X; Lu X; Mao Y
    Ecotoxicol Environ Saf; 2019 Oct; 181():472-480. PubMed ID: 31228823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of phosphate in microalgal-bacterial symbiosis system treating wastewater containing heavy metals.
    Tang CC; Hu YR; Zhang M; Chen SL; He ZW; Li ZH; Tian Y; Wang XC
    Environ Pollut; 2024 May; 349():123951. PubMed ID: 38604305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.