These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 32028710)
21. An insight on pollutant removal mechanisms in phycoremediation of textile wastewater. Selvaraj D; Dhayabaran NK; Mahizhnan A Environ Sci Pollut Res Int; 2023 Dec; 30(60):124714-124734. PubMed ID: 35708812 [TBL] [Abstract][Full Text] [Related]
22. Characterization of river biofilm responses to the exposure with heavy metals using a novel micro fluorometer biosensor. Carafa R; Lorenzo NE; Llopart JS; Kumar V; Schuhmacher M Aquat Toxicol; 2021 Feb; 231():105732. PubMed ID: 33385847 [TBL] [Abstract][Full Text] [Related]
23. Phototrophic periphyton techniques combine phosphorous removal and recovery for sustainable salt-soil zone. Lu H; Feng Y; Wu Y; Yang L; Shao H Sci Total Environ; 2016 Oct; 568():838-844. PubMed ID: 27328877 [TBL] [Abstract][Full Text] [Related]
24. Structural and functional responses of periphyton and macroinvertebrate communities to ferric Fe, Cu, and Zn in stream mesocosms. Cadmus P; Guasch H; Herdrich AT; Bonet B; Urrea G; Clements WH Environ Toxicol Chem; 2018 May; 37(5):1320-1329. PubMed ID: 29278661 [TBL] [Abstract][Full Text] [Related]
25. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Megateli S; Semsari S; Couderchet M Ecotoxicol Environ Saf; 2009 Sep; 72(6):1774-80. PubMed ID: 19505721 [TBL] [Abstract][Full Text] [Related]
26. Interactive effects of phosphorus and copper on Hyalella azteca via periphyton in aquatic ecosystems. Li M; Costello DM; Burton GA Ecotoxicol Environ Saf; 2012 Sep; 83():41-6. PubMed ID: 22738933 [TBL] [Abstract][Full Text] [Related]
27. Metal toxicity and recovery response of riverine periphytic algae. Pandey LK; Bergey EA Sci Total Environ; 2018 Nov; 642():1020-1031. PubMed ID: 30045485 [TBL] [Abstract][Full Text] [Related]
28. Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: A sustainable approach. Saravanan A; Kumar PS; Duc PA; Rangasamy G Chemosphere; 2023 Feb; 313():137323. PubMed ID: 36410512 [TBL] [Abstract][Full Text] [Related]
29. Removal effects of Myriophyllum aquaticum on combined pollutants of nutrients and heavy metals in simulated swine wastewater in summer. Cui J; Wang W; Li J; Du J; Chang Y; Liu X; Hu C; Cui J; Liu C; Yao D Ecotoxicol Environ Saf; 2021 Apr; 213():112032. PubMed ID: 33582409 [TBL] [Abstract][Full Text] [Related]
30. Effect of periphyton community structure on heavy metal accumulation in mystery snail (Cipangopaludina chinensis): a case study of the Bai River, China. Cui J; Shan B; Tang W J Environ Sci (China); 2012; 24(10):1723-30. PubMed ID: 23520840 [TBL] [Abstract][Full Text] [Related]
32. Evaluating role of immobilized periphyton in bioremediation of azo dye amaranth. Shabbir S; Faheem M; Ali N; Kerr PG; Wu Y Bioresour Technol; 2017 Feb; 225():395-401. PubMed ID: 27956332 [TBL] [Abstract][Full Text] [Related]
33. The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Znad H; Awual MR; Martini S Molecules; 2022 Feb; 27(4):. PubMed ID: 35209061 [TBL] [Abstract][Full Text] [Related]
34. Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor. Ma L; Wang F; Yu Y; Liu J; Wu Y Bioresour Technol; 2018 Jan; 248(Pt B):61-67. PubMed ID: 28712782 [TBL] [Abstract][Full Text] [Related]
35. Impact of wastewater on the microbial diversity of periphyton and its tolerance to micropollutants in an engineered flow-through channel system. Carles L; Wullschleger S; Joss A; Eggen RIL; Schirmer K; Schuwirth N; Stamm C; Tlili A Water Res; 2021 Sep; 203():117486. PubMed ID: 34412020 [TBL] [Abstract][Full Text] [Related]
36. Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Mishra A; Malik A Bioresour Technol; 2014 Nov; 171():217-26. PubMed ID: 25203229 [TBL] [Abstract][Full Text] [Related]
37. Removal of nutrients and pharmaceuticals and personal care products from wastewater using periphyton photobioreactors. Kang D; Zhao Q; Wu Y; Wu C; Xiang W Bioresour Technol; 2018 Jan; 248(Pt B):113-119. PubMed ID: 28689959 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor. Azizi S; Kamika I; Tekere M PLoS One; 2016; 11(5):e0155462. PubMed ID: 27186636 [TBL] [Abstract][Full Text] [Related]
40. Bioremoval of heavy metals and nutrients from sewage plant by Anabaena oryzae and Cyanosarcina fontana. Fawzy MA; Issa AA Int J Phytoremediation; 2016; 18(4):321-8. PubMed ID: 26457837 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]