These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 32028727)
1. Correlation Between the Structure and Compressive Property of PMMA Microcellular Foams Fabricated by Supercritical CO Zhang R; Chen J; Zhu Y; Zhang J; Luo G; Cao P; Shen Q; Zhang L Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32028727 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the Constitutive Model of W/PMMA Composite Microcellular Foams. Zhu Y; Luo G; Zhang R; Liu Q; Sun Y; Zhang J; Shen Q; Zhang L Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31277266 [TBL] [Abstract][Full Text] [Related]
3. High-Expansion Open-Cell Polylactide Foams Prepared by Microcellular Foaming Based on Stereocomplexation Mechanism with Outstanding Oil-Water Separation. Li D; Zhang S; Zhao Z; Miao Z; Zhang G; Shi X Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177130 [TBL] [Abstract][Full Text] [Related]
4. Polysulfone foam with high expansion ratio prepared by supercritical carbon dioxide assisted molding foaming method. Li Z; Jia Y; Bai S RSC Adv; 2018 Jan; 8(6):2880-2886. PubMed ID: 35541205 [TBL] [Abstract][Full Text] [Related]
5. In Situ Nanofibrillar Polypropylene-Based Composite Microcellular Foams with Enhanced Mechanical and Flame-Retardant Performances. Jiang Y; Jiang J; Yang L; Zhang Y; Wang X; Zhao N; Hou J; Li Q Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987279 [TBL] [Abstract][Full Text] [Related]
6. Nanostructure of PMMA/MAM Blends Prepared by Out-of-Equilibrium (Extrusion) and Near-Equilibrium (Casting) Self-Assembly and Their Nanocellular or Microcellular Structure Obtained from CO Barroso-Solares S; Bernardo V; Cuadra-Rodriguez D; Pinto J Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835598 [TBL] [Abstract][Full Text] [Related]
7. Experimental and Finite Element Simulation of Polyolefin Elastomer Foams Using Real 3D Structures: Effect of Foaming Agent Content. Rostami-Tapeh-Esmaeil E; Heydari A; Vahidifar A; Esmizadeh E; Rodrigue D Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365685 [TBL] [Abstract][Full Text] [Related]
8. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. Zhang HB; Yan Q; Zheng WG; He Z; Yu ZZ ACS Appl Mater Interfaces; 2011 Mar; 3(3):918-24. PubMed ID: 21366239 [TBL] [Abstract][Full Text] [Related]
9. Biodegradable and Ultra-High Expansion Ratio PPC-P Foams Achieved by Microcellular Foaming Using CO Wu C; Zhang T; Liang J; Yin J; Xiao M; Han D; Huang S; Wang S; Meng Y Nanomaterials (Basel); 2024 Jun; 14(13):. PubMed ID: 38998725 [TBL] [Abstract][Full Text] [Related]
10. Microcellular foaming of arabinoxylan and PEGylated arabinoxylan with supercritical CO Härdelin L; Ström A; Di Maio E; Iannace S; Larsson A Carbohydr Polym; 2018 Feb; 181():442-449. PubMed ID: 29253995 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of Highly Interconnected Poly(ε-caprolactone)/cellulose Nanofiber Composite Foams by Microcellular Foaming and Leaching Processes. Li J; Wang H; Zhou H; Jiang J; Wang X; Li Q ACS Omega; 2021 Sep; 6(35):22672-22680. PubMed ID: 34514238 [TBL] [Abstract][Full Text] [Related]
12. Amorphous Polymers' Foaming and Blends with Organic Foaming-Aid Structured Additives in Supercritical CO Haurat M; Dumon M Molecules; 2020 Nov; 25(22):. PubMed ID: 33202668 [TBL] [Abstract][Full Text] [Related]
13. Preparation of Microcellular Epoxy Foams through a Limited-Foaming Process: A Contradiction with the Time-Temperature-Transformation Cure Diagram. Wang L; Zhang C; Gong W; Ji Y; Qin S; He L Adv Mater; 2018 Jan; 30(3):. PubMed ID: 29205534 [TBL] [Abstract][Full Text] [Related]
14. Effect of Mold Opening Process on Microporous Structure and Properties of Microcellular Polylactide⁻Polylactide Nanocomposites. Xie P; Wu G; Cao Z; Han Z; Zhang Y; An Y; Yang W Polymers (Basel); 2018 May; 10(5):. PubMed ID: 30966588 [TBL] [Abstract][Full Text] [Related]
15. A new promising nucleating agent for polymer foaming: effects of hollow molecular-sieve particles on polypropylene supercritical CO Yang C; Wang M; Xing Z; Zhao Q; Wang M; Wu G RSC Adv; 2018 May; 8(36):20061-20067. PubMed ID: 35541683 [TBL] [Abstract][Full Text] [Related]
16. Development of Eco-Friendly and High-Strength Foam Sensors Based on Segregated Elastomer Composites with a Large Work Range and High Sensitivity. Li X; Wu M; Ma W; Zhou X; Chen J; Ren Q; Li S; Xiao P; Wang L; Zheng W ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38032835 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of three-dimensional polyetherimide bead foams Feng D; Li L; Wang Q RSC Adv; 2019 Jan; 9(7):4072-4081. PubMed ID: 35518111 [TBL] [Abstract][Full Text] [Related]
19. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance. Rouholamin D; van Grunsven W; Reilly GC; Smith PJ Proc Inst Mech Eng H; 2016 Aug; 230(8):761-74. PubMed ID: 27226064 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of Poly(butylene succinate)/Carbon Black Nanocomposite Foams with Good Electrical Conductivity and High Strength by a Supercritical CO Chen Z; Hu J; Ju J; Kuang T Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31717678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]