These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 32028735)

  • 1. A Crop Canopy Localization Method Based on Ultrasonic Ranging and Iterative Self-Organizing Data Analysis Technique Algorithm.
    Li F; Bai X; Li Y
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32028735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods.
    Llorens J; Gil E; Llop J; Escolà A
    Sensors (Basel); 2011; 11(2):2177-94. PubMed ID: 22319405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sprayer boom height measurement in wheat field using ultrasonic sensor: An exploratory study.
    Zhao X; Zhai C; Wang S; Dou H; Yang S; Wang X; Chen L
    Front Plant Sci; 2022; 13():1008122. PubMed ID: 36483955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A LiDAR Sensor-Based Spray Boom Height Detection Method and the Corresponding Experimental Validation.
    Dou H; Wang S; Zhai C; Chen L; Wang X; Zhao X
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing accuracy of long-range ultrasonic sensors for olive tree canopy measurements.
    Gamarra-Diezma JL; Miranda-Fuentes A; Llorens J; Cuenca A; Blanco-Roldán GL; Rodríguez-Lizana A
    Sensors (Basel); 2015 Jan; 15(2):2902-19. PubMed ID: 25635414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing the Suitability of a Terrestrial 2D LiDAR Scanner for Canopy Characterization of Greenhouse Tomato Crops.
    Llop J; Gil E; Llorens J; Miranda-Fuentes A; Gallart M
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27608025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of an ultrasonic ranging sensor in apple tree canopies.
    Escolà A; Planas S; Rosell JR; Pomar J; Camp F; Solanelles F; Gracia F; Llorens J; Gil E
    Sensors (Basel); 2011; 11(3):2459-77. PubMed ID: 22163749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibrating ultrasonic sensor measurements of crop canopy heights: a case study of maize and wheat.
    Zheng Y; Hui X; Cai D; Shoukat MR; Wang Y; Wang Z; Ma F; Yan H
    Front Plant Sci; 2024; 15():1354359. PubMed ID: 38903436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The design and implementation of the leaf area index sensor.
    Li X; Liu Q; Yang R; Zhang H; Zhang J; Cai E
    Sensors (Basel); 2015 Mar; 15(3):6250-69. PubMed ID: 25781513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations.
    Hui F; Zhu J; Hu P; Meng L; Zhu B; Guo Y; Li B; Ma Y
    Ann Bot; 2018 Apr; 121(5):1079-1088. PubMed ID: 29509841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primarily tests of a optoelectronic in-canopy sensor for evaluation of vertical disease infection in cereals.
    Dammer KH; Schirrmann M
    Pest Manag Sci; 2022 Jan; 78(1):143-149. PubMed ID: 34463021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic detection of three-dimensional crop phenotypes based on a consumer-grade RGB-D camera.
    Song P; Li Z; Yang M; Shao Y; Pu Z; Yang W; Zhai R
    Front Plant Sci; 2023; 14():1097725. PubMed ID: 36778701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an Apparatus for Crop-Growth Monitoring and Diagnosis.
    Ni J; Zhang J; Wu R; Pang F; Zhu Y
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30227614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and modelling of effects of leaf rust and Septoria tritici blotch on wheat growth.
    Robert C; Bancal MO; Nicolas P; Lannou C; Ney B
    J Exp Bot; 2004 May; 55(399):1079-94. PubMed ID: 15073221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Cost Three-Dimensional Modeling of Crop Plants.
    Martinez-Guanter J; Ribeiro Á; Peteinatos GG; Pérez-Ruiz M; Gerhards R; Bengochea-Guevara JM; Machleb J; Andújar D
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS.
    Yuan W; Li J; Bhatta M; Shi Y; Baenziger PS; Ge Y
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of a New Canopy Structure Parameter for Rice Using Smartphone Photography.
    Yu Z; Ustin SL; Zhang Z; Liu H; Zhang X; Meng X; Cui Y; Guan H
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32707649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial variability of leaf wetness duration in different crop canopies.
    Sentelhas PC; Gillespie TJ; Batzer JC; Gleason ML; Monteiro JE; Pezzopane JR; Pedro MJ
    Int J Biometeorol; 2005 Jul; 49(6):363-70. PubMed ID: 15756582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UAV-Borne Dual-Band Sensor Method for Monitoring Physiological Crop Status.
    Yao L; Wang Q; Yang J; Zhang Y; Zhu Y; Cao W; Ni J
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology.
    Yin X; Struik PC
    J Exp Bot; 2015 Nov; 66(21):6535-49. PubMed ID: 26224881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.