BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32028785)

  • 1. Performance of
    Machado AI; Fragoso R; Dordio AV; Duarte E
    Int J Phytoremediation; 2020; 22(8):863-871. PubMed ID: 32028785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of chlorpyrifos in recirculating vertical flow constructed wetlands with five wetland plant species.
    Tang XY; Yang Y; McBride MB; Tao R; Dai YN; Zhang XM
    Chemosphere; 2019 Feb; 216():195-202. PubMed ID: 30368084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of imazalil and tebuconazole by four emergent wetland plant species in hydroponic medium.
    Lv T; Zhang Y; Casas ME; Carvalho PN; Arias CA; Bester K; Brix H
    Chemosphere; 2016 Apr; 148():459-66. PubMed ID: 26841287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cr(III) and Cr(VI) removal in floating treatment wetlands (FTWs) using
    Di Luca GA; Mufarrege MLM; Hadad HR; Maine MA; Nocetti E; Montañez F; Campagnoli MA
    Int J Phytoremediation; 2023; 25(13):1819-1829. PubMed ID: 37035876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland.
    Gomes MV; de Souza RR; Teles VS; Araújo Mendes É
    Chemosphere; 2014 May; 103():228-33. PubMed ID: 24369743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cr, Ni, and Zn removal from landfill leachate using vertical flow wetlands planted with
    Maine MA; Hadad HR; Camaño Silvestrini NE; Nocetti E; Sanchez GC; Campagnoli MA
    Int J Phytoremediation; 2022; 24(1):66-75. PubMed ID: 34077330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root growth and nutrient removal of Typha domingensis and Schoenoplectus californicus over the period of plant establishment in a constructed floating wetland.
    Rigotti JA; Paqualini JP; Rodrigues LR
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8927-8935. PubMed ID: 33410026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of initial pesticide concentrations in water on chlorpyrifos toxicity and removal by Iris pseudacorus.
    Wang Q; Yang J; Li C; Xiao B; Que X
    Water Sci Technol; 2013; 67(9):1908-15. PubMed ID: 23656932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root anatomy, growth, and development of Typha domingensis Pers. (Typhaceae) and their relationship with cadmium absorption, accumulation, and tolerance.
    de Oliveira JPV; Pereira MP; Duarte VP; Corrêa FF; de Castro EM; Pereira FJ
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19878-19889. PubMed ID: 35080729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential for phytoremediation of neonicotinoids by nine wetland plants.
    Liu H; Tang X; Xu X; Dai Y; Zhang X; Yang Y
    Chemosphere; 2021 Nov; 283():131083. PubMed ID: 34182627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen and phosphorus removal and Typha domingensis tolerance in a floating treatment wetland.
    Di Luca GA; Mufarrege MM; Hadad HR; Maine MA
    Sci Total Environ; 2019 Feb; 650(Pt 1):233-240. PubMed ID: 30196224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of carbamazepine uptake and metabolization by Typha spp., a plant with potential use in phytotreatment.
    Dordio AV; Belo M; Martins Teixeira D; Palace Carvalho AJ; Dias CM; Picó Y; Pinto AP
    Bioresour Technol; 2011 Sep; 102(17):7827-34. PubMed ID: 21745739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical flow wetlands and hybrid systems for the treatment of landfill leachate.
    Silvestrini NEC; Hadad HR; Maine MA; Sánchez GC; Del Carmen Pedro M; Caffaratti SE
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):8019-8027. PubMed ID: 30684173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of Typha domingensis Pers. in floating wetlands systems for the treatment of water polluted with phosphorus and nitrogen.
    Mufarrege MLM; Di Luca GA; Carreras ÁA; Hadad HR; Maine MA; Campagnoli MA; Nocetti E
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):50582-50592. PubMed ID: 36800086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Typha domingensis in the removal of high P concentrations from water.
    Di Luca GA; Maine MA; Mufarrege MM; Hadad HR; Bonetto CA
    Chemosphere; 2015 Nov; 138():405-11. PubMed ID: 26149856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of 27 micropollutants by selected wetland macrophytes in hydroponic conditions.
    Brunhoferova H; Venditti S; Schlienz M; Hansen J
    Chemosphere; 2021 Oct; 281():130980. PubMed ID: 34289626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation of atrazine by three emergent hydrophytes in a hydroponic system.
    Wang Q; Zhang W; Li C; Xiao B
    Water Sci Technol; 2012; 66(6):1282-8. PubMed ID: 22828307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia.
    Bonanno G; Cirelli GL
    Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake, subcellular distribution, and fate of tetracycline in two wetland plants supplemented with microbial agents: Effect and mechanism.
    Zhong J; Wei H; Xie JX; Wu YH; Tang B; Zou Q; Guo PR; Chen ZL
    J Environ Manage; 2024 Jul; 364():121428. PubMed ID: 38879966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water.
    Shahid MJ; Ali S; Shabir G; Siddique M; Rizwan M; Seleiman MF; Afzal M
    Chemosphere; 2020 Mar; 243():125353. PubMed ID: 31765899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.