BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 32029002)

  • 1. Integrative prediction of gene expression with chromatin accessibility and conformation data.
    Schmidt F; Kern F; Schulz MH
    Epigenetics Chromatin; 2020 Feb; 13(1):4. PubMed ID: 32029002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancer prediction in the human genome by probabilistic modelling of the chromatin feature patterns.
    Osmala M; Lähdesmäki H
    BMC Bioinformatics; 2020 Jul; 21(1):317. PubMed ID: 32689977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HiCoP, a simple and robust method for detecting interactions of regulatory regions.
    Zhang Y; Li Z; Bian S; Zhao H; Feng D; Chen Y; Hou Y; Liu Q; Hao B
    Epigenetics Chromatin; 2020 Jul; 13(1):27. PubMed ID: 32611439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.
    Schmidt F; Gasparoni N; Gasparoni G; Gianmoena K; Cadenas C; Polansky JK; Ebert P; Nordström K; Barann M; Sinha A; Fröhler S; Xiong J; Dehghani Amirabad A; Behjati Ardakani F; Hutter B; Zipprich G; Felder B; Eils J; Brors B; Chen W; Hengstler JG; Hamann A; Lengauer T; Rosenstiel P; Walter J; Schulz MH
    Nucleic Acids Res; 2017 Jan; 45(1):54-66. PubMed ID: 27899623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing transcription factor combinatorics in different promoter classes and in enhancers.
    Vandel J; Cassan O; Lèbre S; Lecellier CH; Bréhélin L
    BMC Genomics; 2019 Feb; 20(1):103. PubMed ID: 30709337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of significant chromatin contacts from HiChIP data by FitHiChIP.
    Bhattacharyya S; Chandra V; Vijayanand P; Ay F
    Nat Commun; 2019 Sep; 10(1):4221. PubMed ID: 31530818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical cooperation of transcription factors from integration analysis of DNA sequences, ChIP-Seq and ChIA-PET data.
    Wang R; Wang Y; Zhang X; Zhang Y; Du X; Fang Y; Li G
    BMC Genomics; 2019 May; 20(Suppl 3):296. PubMed ID: 32039697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepCAGE: Incorporating Transcription Factors in Genome-wide Prediction of Chromatin Accessibility.
    Liu Q; Hua K; Zhang X; Wong WH; Jiang R
    Genomics Proteomics Bioinformatics; 2022 Jun; 20(3):496-507. PubMed ID: 35293310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs.
    Ibn-Salem J; Andrade-Navarro MA
    BMC Genomics; 2019 Oct; 20(1):777. PubMed ID: 31653198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early adaptive chromatin remodeling events precede pathologic phenotypes and are reinforced in the failing heart.
    Chapski DJ; Cabaj M; Morselli M; Mason RJ; Soehalim E; Ren S; Pellegrini M; Wang Y; Vondriska TM; Rosa-Garrido M
    J Mol Cell Cardiol; 2021 Nov; 160():73-86. PubMed ID: 34273410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In the loop: promoter-enhancer interactions and bioinformatics.
    Mora A; Sandve GK; Gabrielsen OS; Eskeland R
    Brief Bioinform; 2016 Nov; 17(6):980-995. PubMed ID: 26586731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Interplay between Transcription Factors and the 3D Genome.
    Kim S; Shendure J
    Mol Cell; 2019 Oct; 76(2):306-319. PubMed ID: 31521504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATAC-seq reveals regional differences in enhancer accessibility during the establishment of spatial coordinates in the
    Bozek M; Cortini R; Storti AE; Unnerstall U; Gaul U; Gompel N
    Genome Res; 2019 May; 29(5):771-783. PubMed ID: 30962180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static and Dynamic DNA Loops form AP-1-Bound Activation Hubs during Macrophage Development.
    Phanstiel DH; Van Bortle K; Spacek D; Hess GT; Shamim MS; Machol I; Love MI; Aiden EL; Bassik MC; Snyder MP
    Mol Cell; 2017 Sep; 67(6):1037-1048.e6. PubMed ID: 28890333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin accessibility dynamics reveal novel functional enhancers in
    Daugherty AC; Yeo RW; Buenrostro JD; Greenleaf WJ; Kundaje A; Brunet A
    Genome Res; 2017 Dec; 27(12):2096-2107. PubMed ID: 29141961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure.
    Hou Y; Li F; Zhang R; Li S; Liu H; Qin ZS; Sun X
    Epigenetics; 2019 Sep; 14(9):894-911. PubMed ID: 31177910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.