BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32029101)

  • 1. Enzyme induced molecularly imprinted polymer on SERS substrate for ultrasensitive detection of patulin.
    Zhu Y; Wu L; Yan H; Lu Z; Yin W; Han H
    Anal Chim Acta; 2020 Mar; 1101():111-119. PubMed ID: 32029101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection.
    Li J; Yan H; Tan X; Lu Z; Han H
    Anal Chem; 2019 Mar; 91(6):3885-3892. PubMed ID: 30793591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of thiram on fruit surfaces and in juices with minimum sample pretreatment via a bendable and reusable substrate for surface-enhanced Raman scattering.
    Wu J; Huang Y; Miao J; Lai K
    J Sci Food Agric; 2022 Nov; 102(14):6211-6219. PubMed ID: 35478166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecularly Imprinted Poly(thionine)-Based Electrochemical Sensing Platform for Fast and Selective Ultratrace Determination of Patulin.
    Huang Q; Zhao Z; Nie D; Jiang K; Guo W; Fan K; Zhang Z; Meng J; Wu Y; Han Z
    Anal Chem; 2019 Mar; 91(6):4116-4123. PubMed ID: 30793880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ratiometric surface-enhanced Raman scattering strategy using gold nanoparticles confined on an ultrathin polydimethylsiloxane grafted gold mirror film substrate for ferbam screening in fruit juice.
    Ahmad W; Wang L; Li H; Chen Q
    Anal Chim Acta; 2023 Oct; 1276():341648. PubMed ID: 37573125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice.
    Zhang Y; Wang Y; Liu A; Liu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep; 297():122721. PubMed ID: 37054572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice.
    Zhang W; Han Y; Chen X; Luo X; Wang J; Yue T; Li Z
    Food Chem; 2017 Oct; 232():145-154. PubMed ID: 28490057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel SeS2-loaded Co MOF with Au@PANI comprised electroanalytical molecularly imprinted polymer-based disposable sensor for patulin mycotoxin.
    Selvam SP; Kadam AN; Maiyelvaganan KR; Prakash M; Cho S
    Biosens Bioelectron; 2021 Sep; 187():113302. PubMed ID: 34000454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid synthesis of a highly active and uniform 3-dimensional SERS substrate for on-spot sensing of dopamine.
    Lin B; Chen J; Kannan P; Zeng Y; Qiu B; Guo L; Lin Z
    Mikrochim Acta; 2019 Mar; 186(4):260. PubMed ID: 30927088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A film-like SERS aptasensor for sensitive detection of patulin based on GO@Au nanosheets.
    Xue S; Yin L; Gao S; Zhou R; Zhang Y; Jayan H; El-Seedi HR; Zou X; Guo Z
    Food Chem; 2024 May; 441():138364. PubMed ID: 38219369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate.
    Duan N; Shen M; Qi S; Wang W; Wu S; Wang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118103. PubMed ID: 32000058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid fabrication of the Au hexagonal cone arrays for SERS applications.
    Liu C; Yuan X; Wu J; Wang S; Fang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 286():121969. PubMed ID: 36323080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin.
    Bagheri N; Khataee A; Habibi B; Hassanzadeh J
    Talanta; 2018 Mar; 179():710-718. PubMed ID: 29310298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mussel-inspired PDA-based MIP-SERS sensor for the detection of trace MG in environmental water.
    Zhang X; Luan L; Huang Y; Yao M; Li P; Xu W
    Analyst; 2022 Dec; 147(24):5701-5709. PubMed ID: 36355036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis.
    Kamińska A; Szymborski T; Jaroch T; Zmysłowski A; Szterk A
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():208-217. PubMed ID: 29519430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The determination of patulin from food samples using dual-dummy molecularly imprinted solid-phase extraction coupled with LC-MS/MS.
    Zhao M; Shao H; He Y; Li H; Yan M; Jiang Z; Wang J; Abd El-Aty AM; Hacımüftüoğlu A; Yan F; Wang Y; She Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Sep; 1125():121714. PubMed ID: 31357106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications.
    Chang L; Ding Y; Li X
    Biosens Bioelectron; 2013 Dec; 50():106-10. PubMed ID: 23838276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of core-shell magnetic molecularly imprinted polymers for extraction of patulin from juice samples.
    Zhao M; Shao H; Ma J; Li H; He Y; Wang M; Jin F; Wang J; Abd El-Aty AM; Hacımüftüoğlu A; Yan F; Wang Y; She Y
    J Chromatogr A; 2020 Mar; 1615():460751. PubMed ID: 31864724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe
    Pang Y; Wan N; Shi L; Wang C; Sun Z; Xiao R; Wang S
    Anal Chim Acta; 2019 Oct; 1077():288-296. PubMed ID: 31307721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection.
    Kamra T; Zhou T; Montelius L; Schnadt J; Ye L
    Anal Chem; 2015; 87(10):5056-61. PubMed ID: 25897989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.