These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 32029301)
1. Waste based hydrogen production for circular bioeconomy: Current status and future directions. Chandrasekhar K; Kumar S; Lee BD; Kim SH Bioresour Technol; 2020 Apr; 302():122920. PubMed ID: 32029301 [TBL] [Abstract][Full Text] [Related]
2. Dark fermentative hydrogen production: Potential of food waste as future energy needs. Mohanakrishna G; Sneha NP; Rafi SM; Sarkar O Sci Total Environ; 2023 Aug; 888():163801. PubMed ID: 37127164 [TBL] [Abstract][Full Text] [Related]
3. Advanced microalgae-based renewable biohydrogen production systems: A review. Goswami RK; Mehariya S; Obulisamy PK; Verma P Bioresour Technol; 2021 Jan; 320(Pt A):124301. PubMed ID: 33152683 [TBL] [Abstract][Full Text] [Related]
4. Development of novel strategies for higher fermentative biohydrogen recovery along with novel metabolites from organic wastes: The present state of the art. Rao R; Basak N Biotechnol Appl Biochem; 2021 Jun; 68(3):421-444. PubMed ID: 32474946 [TBL] [Abstract][Full Text] [Related]
5. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Kumar Sarangi P; Subudhi S; Bhatia L; Saha K; Mudgil D; Prasad Shadangi K; Srivastava RK; Pattnaik B; Arya RK Environ Sci Pollut Res Int; 2023 Jan; 30(4):8526-8539. PubMed ID: 35554831 [TBL] [Abstract][Full Text] [Related]
6. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review. Poggi-Varaldo HM; Munoz-Paez KM; Escamilla-Alvarado C; Robledo-Narváez PN; Ponce-Noyola MT; Calva-Calva G; Ríos-Leal E; Galíndez-Mayer J; Estrada-Vázquez C; Ortega-Clemente A; Rinderknecht-Seijas NF Waste Manag Res; 2014 May; 32(5):353-65. PubMed ID: 24742981 [TBL] [Abstract][Full Text] [Related]
7. A review on biological biohydrogen production: Outlook on genetic strain enhancements, reactor model and techno-economics analysis. Nirmala N; Praveen G; AmitKumar S; SundarRajan P; Baskaran A; Priyadharsini P; SanjayKumar S; Dawn S; Pavithra KG; Arun J; Pugazhendhi A Sci Total Environ; 2023 Oct; 896():165143. PubMed ID: 37369314 [TBL] [Abstract][Full Text] [Related]
8. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. Sharma S; Basu S; Shetti NP; Aminabhavi TM Sci Total Environ; 2020 Apr; 713():136633. PubMed ID: 32019020 [TBL] [Abstract][Full Text] [Related]
9. Biohydrogen production: strategies to improve process efficiency through microbial routes. Chandrasekhar K; Lee YJ; Lee DW Int J Mol Sci; 2015 Apr; 16(4):8266-93. PubMed ID: 25874756 [TBL] [Abstract][Full Text] [Related]
10. Fermentative hydrogen production from low-value substrates. Hassan AHS; Mietzel T; Brunstermann R; Schmuck S; Schoth J; Küppers M; Widmann R World J Microbiol Biotechnol; 2018 Nov; 34(12):176. PubMed ID: 30446833 [TBL] [Abstract][Full Text] [Related]
11. Thermophilic biohydrogen production strategy using agro industrial wastes: Current update, challenges, and sustainable solutions. Haque S; Singh R; Pal DB; Faidah H; Ashgar SS; Areeshi MY; Almalki AH; Verma B; Srivastava N; Gupta VK Chemosphere; 2022 Nov; 307(Pt 4):136120. PubMed ID: 35995181 [TBL] [Abstract][Full Text] [Related]
12. Biofuel production for circular bioeconomy: Present scenario and future scope. Ye Y; Guo W; Ngo HH; Wei W; Cheng D; Bui XT; Hoang NB; Zhang H Sci Total Environ; 2024 Jul; 935():172863. PubMed ID: 38788387 [TBL] [Abstract][Full Text] [Related]
13. Biochemical biorefinery: A low-cost and non-waste concept for promoting sustainable circular bioeconomy. Igbokwe VC; Ezugworie FN; Onwosi CO; Aliyu GO; Obi CJ J Environ Manage; 2022 Mar; 305():114333. PubMed ID: 34952394 [TBL] [Abstract][Full Text] [Related]
14. Dark fermentation and microalgae cultivation coupled systems: Outlook and challenges. Lacroux J; Llamas M; Dauptain K; Avila R; Steyer JP; van Lis R; Trably E Sci Total Environ; 2023 Mar; 865():161136. PubMed ID: 36587699 [TBL] [Abstract][Full Text] [Related]
15. Surpassing the current limitations of biohydrogen production systems: The case for a novel hybrid approach. Boboescu IZ; Gherman VD; Lakatos G; Pap B; Bíró T; Maróti G Bioresour Technol; 2016 Mar; 204():192-201. PubMed ID: 26790867 [TBL] [Abstract][Full Text] [Related]
16. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Xing Y; Li Z; Fan Y; Hou H Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259 [TBL] [Abstract][Full Text] [Related]
17. Biohydrogen in a circular bioeconomy: A critical review. Ubando AT; Chen WH; Hurt DA; Conversion A; Rajendran S; Lin SL Bioresour Technol; 2022 Dec; 366():128168. PubMed ID: 36283666 [TBL] [Abstract][Full Text] [Related]
18. Renewable hydrogen production from biomass and wastes (ReBioH Kim SH; Kumar G; Chen WH; Khanal SK Bioresour Technol; 2021 Jul; 331():125024. PubMed ID: 33814292 [TBL] [Abstract][Full Text] [Related]