BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32029443)

  • 1. Cellular sources of interleukin-6 and associations with clinical phenotypes and outcomes in pulmonary arterial hypertension.
    Simpson CE; Chen JY; Damico RL; Hassoun PM; Martin LJ; Yang J; Nies M; Griffiths M; Vaidya RD; Brandal S; Pauciulo MW; Lutz KA; Coleman AW; Austin ED; Ivy DD; Nichols WC; Everett AD
    Eur Respir J; 2020 Apr; 55(4):. PubMed ID: 32029443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of IL-17 on pulmonary artery smooth muscle cells and connective tissue disease-associated pulmonary arterial hypertension.
    Shi TY; Wen XH; Meng J; Lu YW
    Immun Inflamm Dis; 2024 Apr; 12(4):e1243. PubMed ID: 38577988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circulating markers of inflammation and angiogenesis and clinical outcomes across subtypes of pulmonary arterial hypertension.
    Hirsch K; Nolley S; Ralph DD; Zheng Y; Altemeier WA; Rhodes CJ; Morrell NW; Wilkins MR; Leary PJ; Rayner SG
    J Heart Lung Transplant; 2023 Feb; 42(2):173-182. PubMed ID: 36470771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nestin represents a potential marker of pulmonary vascular remodeling in pulmonary arterial hypertension associated with congenital heart disease.
    Zhou JJ; Li H; Qian YL; Quan RL; Chen XX; Li L; Li Y; Wang PH; Meng XM; Jing XL; He JG
    J Mol Cell Cardiol; 2020 Dec; 149():41-53. PubMed ID: 32950539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autophagy contributes to BMP type 2 receptor degradation and development of pulmonary arterial hypertension.
    Gomez-Puerto MC; van Zuijen I; Huang CJ; Szulcek R; Pan X; van Dinther MA; Kurakula K; Wiesmeijer CC; Goumans MJ; Bogaard HJ; Morrell NW; Rana AA; Ten Dijke P
    J Pathol; 2019 Nov; 249(3):356-367. PubMed ID: 31257577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Severe Pulmonary Arterial Hypertension Is Characterized by Increased Neutrophil Elastase and Relative Elafin Deficiency.
    Sweatt AJ; Miyagawa K; Rhodes CJ; Taylor S; Del Rosario PA; Hsi A; Haddad F; Spiekerkoetter E; Bental-Roof M; Bland RD; Swietlik EM; Gräf S; Wilkins MR; Morrell NW; Nicolls MR; Rabinovitch M; Zamanian RT
    Chest; 2021 Oct; 160(4):1442-1458. PubMed ID: 34181952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGF12 (Fibroblast Growth Factor 12) Inhibits Vascular Smooth Muscle Cell Remodeling in Pulmonary Arterial Hypertension.
    Yeo Y; Yi ES; Kim JM; Jo EK; Seo S; Kim RI; Kim KL; Sung JH; Park SG; Suh W
    Hypertension; 2020 Dec; 76(6):1778-1786. PubMed ID: 33100045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolomic Differences in Connective Tissue Disease-Associated Versus Idiopathic Pulmonary Arterial Hypertension in the PVDOMICS Cohort.
    Simpson CE; Hemnes AR; Griffiths M; Grunig G; Tang WHW; Garcia JGN; Barnard J; Comhair SA; Damico RL; Mathai SC; Hassoun PM;
    Arthritis Rheumatol; 2023 Dec; 75(12):2240-2251. PubMed ID: 37335853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine-rich 61 (Cyr61) upregulated in pulmonary arterial hypertension promotes the proliferation of pulmonary artery smooth muscle cells.
    Gao L; Fan Y; Hao Y; Yuan P; Liu D; Jing Z; Zhang Z
    Int J Med Sci; 2017; 14(9):820-828. PubMed ID: 28824319
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification of Celastramycin as a Novel Therapeutic Agent for Pulmonary Arterial Hypertension.
    Kurosawa R; Satoh K; Kikuchi N; Kikuchi H; Saigusa D; Al-Mamun ME; Siddique MAH; Omura J; Satoh T; Sunamura S; Nogi M; Numano K; Miyata S; Uruno A; Kano K; Matsumoto Y; Doi T; Aoki J; Oshima Y; Yamamoto M; Shimokawa H
    Circ Res; 2019 Jul; 125(3):309-327. PubMed ID: 31195886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic analysis of pulmonary artery smooth muscle cells identifies new potential therapeutic targets for idiopathic pulmonary arterial hypertension.
    Gorr MW; Sriram K; Muthusamy A; Insel PA
    Br J Pharmacol; 2020 Aug; 177(15):3505-3518. PubMed ID: 32337710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential responses of pulmonary vascular cells from PAH patients and controls to TNFα and the effect of the BET inhibitor JQ1.
    Mumby S; Perros F; Grynblat J; Manaud G; Papi A; Casolari P; Caramori G; Humbert M; John Wort S; Adcock IM
    Respir Res; 2023 Jul; 24(1):193. PubMed ID: 37516840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cathepsin S promotes the development of pulmonary arterial hypertension.
    Chang CJ; Hsu HC; Ho WJ; Chang GJ; Pang JS; Chen WJ; Huang CC; Lai YJ
    Am J Physiol Lung Cell Mol Physiol; 2019 Jul; 317(1):L1-L13. PubMed ID: 31017016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LncRNA-SMILR modulates RhoA/ROCK signaling by targeting miR-141 to regulate vascular remodeling in pulmonary arterial hypertension.
    Lei S; Peng F; Li ML; Duan WB; Peng CQ; Wu SJ
    Am J Physiol Heart Circ Physiol; 2020 Aug; 319(2):H377-H391. PubMed ID: 32559140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA‑15a‑5p induces pulmonary artery smooth muscle cell apoptosis in a pulmonary arterial hypertension model via the VEGF/p38/MMP‑2 signaling pathway.
    Zhang W; Li Y; Xi X; Zhu G; Wang S; Liu Y; Song M
    Int J Mol Med; 2020 Feb; 45(2):461-474. PubMed ID: 31894295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implication of EZH2 in the Pro-Proliferative and Apoptosis-Resistant Phenotype of Pulmonary Artery Smooth Muscle Cells in PAH: A Transcriptomic and Proteomic Approach.
    Habbout K; Omura J; Awada C; Bourgeois A; Grobs Y; Krishna V; Breuils-Bonnet S; Tremblay E; Mkannez G; Martineau S; Nadeau V; Roux-Dalvai F; Orcholski M; Jeyaseelan J; Gutstein D; Potus F; Provencher S; Bonnet S; Paulin R; Boucherat O
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33803922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicenter Preclinical Validation of BET Inhibition for the Treatment of Pulmonary Arterial Hypertension.
    Van der Feen DE; Kurakula K; Tremblay E; Boucherat O; Bossers GPL; Szulcek R; Bourgeois A; Lampron MC; Habbout K; Martineau S; Paulin R; Kulikowski E; Jahagirdar R; Schalij I; Bogaard HJ; Bartelds B; Provencher S; Berger RMF; Bonnet S; Goumans MJ
    Am J Respir Crit Care Med; 2019 Oct; 200(7):910-920. PubMed ID: 31042405
    [No Abstract]   [Full Text] [Related]  

  • 18. Crucial role of RAGE in inappropriate increase of smooth muscle cells from patients with pulmonary arterial hypertension.
    Nakamura K; Sakaguchi M; Matsubara H; Akagi S; Sarashina T; Ejiri K; Akazawa K; Kondo M; Nakagawa K; Yoshida M; Miyoshi T; Ogo T; Oto T; Toyooka S; Higashimoto Y; Fukami K; Ito H
    PLoS One; 2018; 13(9):e0203046. PubMed ID: 30180189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential role of cellular senescence in pulmonary arterial hypertension.
    Liu L; Wei Y; Giunta S; He Q; Xia S
    Clin Exp Pharmacol Physiol; 2022 Oct; 49(10):1042-1049. PubMed ID: 35748218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MiR-18a-5p contributes to enhanced proliferation and migration of PASMCs via targeting Notch2 in pulmonary arterial hypertension.
    Miao R; Liu W; Qi C; Song Y; Zhang Y; Fu Y; Liu W; Lang Y; Zhang Y; Zhang Z
    Life Sci; 2020 Sep; 257():117919. PubMed ID: 32585247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.