These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 32029466)
1. Imaging-Based Algorithm for the Local Grading of Glioma. Gates EDH; Lin JS; Weinberg JS; Prabhu SS; Hamilton J; Hazle JD; Fuller GN; Baladandayuthapani V; Fuentes DT; Schellingerhout D AJNR Am J Neuroradiol; 2020 Mar; 41(3):400-407. PubMed ID: 32029466 [TBL] [Abstract][Full Text] [Related]
2. Guiding the first biopsy in glioma patients using estimated Ki-67 maps derived from MRI: conventional versus advanced imaging. Gates EDH; Lin JS; Weinberg JS; Hamilton J; Prabhu SS; Hazle JD; Fuller GN; Baladandayuthapani V; Fuentes D; Schellingerhout D Neuro Oncol; 2019 Mar; 21(4):527-536. PubMed ID: 30657997 [TBL] [Abstract][Full Text] [Related]
3. Glioma grading using a machine-learning framework based on optimized features obtained from T Sengupta A; Ramaniharan AK; Gupta RK; Agarwal S; Singh A J Magn Reson Imaging; 2019 Oct; 50(4):1295-1306. PubMed ID: 30895704 [TBL] [Abstract][Full Text] [Related]
4. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431 [TBL] [Abstract][Full Text] [Related]
5. Estimating Local Cellular Density in Glioma Using MR Imaging Data. Gates EDH; Weinberg JS; Prabhu SS; Lin JS; Hamilton J; Hazle JD; Fuller GN; Baladandayuthapani V; Fuentes DT; Schellingerhout D AJNR Am J Neuroradiol; 2021 Jan; 42(1):102-108. PubMed ID: 33243897 [TBL] [Abstract][Full Text] [Related]
6. Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume. Choi YS; Ahn SS; Lee SK; Chang JH; Kang SG; Kim SH; Zhou J Eur Radiol; 2017 Aug; 27(8):3181-3189. PubMed ID: 28116517 [TBL] [Abstract][Full Text] [Related]
7. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging. Hashido T; Saito S; Ishida T J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479 [TBL] [Abstract][Full Text] [Related]
8. Performance of Standardized Relative CBV for Quantifying Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against Normalized Relative CBV Using Image-Localized Stereotactic Biopsies. Hoxworth JM; Eschbacher JM; Gonzales AC; Singleton KW; Leon GD; Smith KA; Stokes AM; Zhou Y; Mazza GL; Porter AB; Mrugala MM; Zimmerman RS; Bendok BR; Patra DP; Krishna C; Boxerman JL; Baxter LC; Swanson KR; Quarles CC; Schmainda KM; Hu LS AJNR Am J Neuroradiol; 2020 Mar; 41(3):408-415. PubMed ID: 32165359 [TBL] [Abstract][Full Text] [Related]
9. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features. Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282 [TBL] [Abstract][Full Text] [Related]
11. World Health Organization Grade II/III Glioma Molecular Status: Prediction by MRI Morphologic Features and Apparent Diffusion Coefficient. Maynard J; Okuchi S; Wastling S; Busaidi AA; Almossawi O; Mbatha W; Brandner S; Jaunmuktane Z; Koc AM; Mancini L; Jäger R; Thust S Radiology; 2020 Jul; 296(1):111-121. PubMed ID: 32315266 [TBL] [Abstract][Full Text] [Related]
12. Radiomics Analysis for Glioma Malignancy Evaluation Using Diffusion Kurtosis and Tensor Imaging. Takahashi S; Takahashi W; Tanaka S; Haga A; Nakamoto T; Suzuki Y; Mukasa A; Takayanagi S; Kitagawa Y; Hana T; Nejo T; Nomura M; Nakagawa K; Saito N Int J Radiat Oncol Biol Phys; 2019 Nov; 105(4):784-791. PubMed ID: 31344432 [TBL] [Abstract][Full Text] [Related]
13. An automatic glioma grading method based on multi-feature extraction and fusion. Zhan T; Feng P; Hong X; Lu Z; Xiao L; Zhang Y Technol Health Care; 2017 Jul; 25(S1):377-385. PubMed ID: 28582926 [TBL] [Abstract][Full Text] [Related]
14. Biopsy targeting gliomas: do functional imaging techniques identify similar target areas? Weber MA; Henze M; Tüttenberg J; Stieltjes B; Meissner M; Zimmer F; Burkholder I; Kroll A; Combs SE; Vogt-Schaden M; Giesel FL; Zoubaa S; Haberkorn U; Kauczor HU; Essig M Invest Radiol; 2010 Dec; 45(12):755-68. PubMed ID: 20829706 [TBL] [Abstract][Full Text] [Related]
15. Diagnostic performance of apparent diffusion coefficient parameters for glioma grading. Wang Q; Zhang J; Xu X; Chen X; Xu B J Neurooncol; 2018 Aug; 139(1):61-68. PubMed ID: 29574566 [TBL] [Abstract][Full Text] [Related]
16. Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas. Alis D; Bagcilar O; Senli YD; Yergin M; Isler C; Kocer N; Islak C; Kizilkilic O Jpn J Radiol; 2020 Feb; 38(2):135-143. PubMed ID: 31741126 [TBL] [Abstract][Full Text] [Related]
17. Intravoxel incoherent motion diffusion-weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion. Shen N; Zhao L; Jiang J; Jiang R; Su C; Zhang S; Tang X; Zhu W J Magn Reson Imaging; 2016 Sep; 44(3):620-32. PubMed ID: 26880230 [TBL] [Abstract][Full Text] [Related]
18. Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas. Server A; Kulle B; Gadmar ØB; Josefsen R; Kumar T; Nakstad PH Eur J Radiol; 2011 Nov; 80(2):462-70. PubMed ID: 20708868 [TBL] [Abstract][Full Text] [Related]
19. Optimizing Texture Retrieving Model for Multimodal MR Image-Based Support Vector Machine for Classifying Glioma. Yang Y; Yan LF; Zhang X; Nan HY; Hu YC; Han Y; Zhang J; Liu ZC; Sun YZ; Tian Q; Yu Y; Sun Q; Wang SY; Zhang X; Wang W; Cui GB J Magn Reson Imaging; 2019 May; 49(5):1263-1274. PubMed ID: 30623514 [TBL] [Abstract][Full Text] [Related]
20. Dynamic susceptibility contrast and dynamic contrast-enhanced MRI characteristics to distinguish microcystic meningiomas from traditional Grade I meningiomas and high-grade gliomas. Hussain NS; Moisi MD; Keogh B; McCullough BJ; Rostad S; Newell D; Gwinn R; Foltz G; Mayberg M; Aguedan B; Good V; Fouke SJ J Neurosurg; 2017 Apr; 126(4):1220-1226. PubMed ID: 27285539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]