BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 32029475)

  • 1. Allosteric regulation of menaquinone (vitamin K
    Bashiri G; Nigon LV; Jirgis ENM; Ho NAT; Stanborough T; Dawes SS; Baker EN; Bulloch EMM; Johnston JM
    J Biol Chem; 2020 Mar; 295(12):3759-3770. PubMed ID: 32029475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allosteric inhibition of
    Stanborough T; Ho NAT; Bulloch EMM; Bashiri G; Dawes SS; Akazong EW; Titterington J; Allison TM; Jiao W; Johnston JM
    Philos Trans R Soc Lond B Biol Sci; 2023 Feb; 378(1871):20220035. PubMed ID: 36633276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two active site arginines are critical determinants of substrate binding and catalysis in MenD: a thiamine-dependent enzyme in menaquinone biosynthesis.
    Qin M; Song H; Dai X; Chen Y; Guo Z
    Biochem J; 2018 Nov; 475(22):3651-3667. PubMed ID: 30341164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and reactivity of Bacillus subtilis MenD catalyzing the first committed step in menaquinone biosynthesis.
    Dawson A; Chen M; Fyfe PK; Guo Z; Hunter WN
    J Mol Biol; 2010 Aug; 401(2):253-64. PubMed ID: 20600129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Views along the Mycobacterium tuberculosis MenD Reaction Pathway Illuminate Key Aspects of Thiamin Diphosphate-Dependent Enzyme Mechanisms.
    Jirgis EN; Bashiri G; Bulloch EM; Johnston JM; Baker EN
    Structure; 2016 Jul; 24(7):1167-77. PubMed ID: 27291649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity and reactivity in menaquinone biosynthesis: the structure of Escherichia coli MenD (2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase).
    Dawson A; Fyfe PK; Hunter WN
    J Mol Biol; 2008 Dec; 384(5):1353-68. PubMed ID: 18983854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K2 biosynthesis.
    Truglio JJ; Theis K; Feng Y; Gajda R; Machutta C; Tonge PJ; Kisker C
    J Biol Chem; 2003 Oct; 278(43):42352-60. PubMed ID: 12909628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional analysis of Vitamin K2 synthesis protein MenD.
    Priyadarshi A; Kim EE; Hwang KY
    Biochem Biophys Res Commun; 2009 Oct; 388(4):748-51. PubMed ID: 19703421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of six important amino acid residues of MenA from Bacillus subtilis natto for enzyme activity and formation of menaquinone.
    Hu LX; Feng JJ; Wu J; Li W; Gningue SM; Yang ZM; Wang Z; Liu Y; Xue ZL
    Enzyme Microb Technol; 2020 Aug; 138():109583. PubMed ID: 32527527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-control of vitamin K
    Blaise M; Kremer L
    J Biol Chem; 2020 Mar; 295(12):3771-3772. PubMed ID: 32198187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in menaquinone biosynthesis: sublocalisation and allosteric regulation.
    Johnston JM; Bulloch EM
    Curr Opin Struct Biol; 2020 Dec; 65():33-41. PubMed ID: 32634692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-dependent active-site closure revealed in the crystal structure of Mycobacterium tuberculosis MenB complexed with product analogues.
    Song H; Sung HP; Tse YS; Jiang M; Guo Z
    Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):2959-69. PubMed ID: 25372686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolving the naturally compromised chorismate mutase from Mycobacterium tuberculosis to top performance.
    Fahrig-Kamarauskait J; Würth-Roderer K; Thorbjørnsrud HV; Mailand S; Krengel U; Kast P
    J Biol Chem; 2020 Dec; 295(51):17514-17534. PubMed ID: 33453995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids.
    Reichau S; Blackmore NJ; Jiao W; Parker EJ
    PLoS One; 2016; 11(4):e0152723. PubMed ID: 27128682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of MenA (isoprenyl diphosphate:1,4-dihydroxy-2-naphthoate isoprenyltransferase) from Mycobacterium tuberculosis.
    Dhiman RK; Pujari V; Kincaid JM; Ikeh MA; Parish T; Crick DC
    PLoS One; 2019; 14(4):e0214958. PubMed ID: 30978223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional analysis of Rv0554 from Mycobacterium tuberculosis: testing a putative role in menaquinone biosynthesis.
    Johnston JM; Jiang M; Guo Z; Baker EN
    Acta Crystallogr D Biol Crystallogr; 2010 Aug; 66(Pt 8):909-17. PubMed ID: 20693690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of the second oxyanion intermediate by 1,4-dihydroxy-2-naphthoyl-coenzyme A synthase of the menaquinone pathway: spectroscopic evidence of the involvement of a conserved aspartic acid.
    Chen M; Jiang M; Sun Y; Guo ZF; Guo Z
    Biochemistry; 2011 Jul; 50(26):5893-904. PubMed ID: 21627110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of allosteric regulators on individual steps in the reaction catalyzed by Mycobacterium tuberculosis 2-hydroxy-3-oxoadipate synthase.
    Balakrishnan A; Jordan F; Nathan CF
    J Biol Chem; 2013 Jul; 288(30):21688-702. PubMed ID: 23760263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Menaquinone (vitamin K2) biosynthesis: localization and characterization of the menA gene from Escherichia coli.
    Suvarna K; Stevenson D; Meganathan R; Hudspeth ME
    J Bacteriol; 1998 May; 180(10):2782-7. PubMed ID: 9573170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic culture of Propionibacterium freudenreichii ET-3 can increase production ratio of 1,4-dihydroxy-2-naphthoic acid to menaquinone.
    Furuichi K; Hojo K; Katakura Y; Ninomiya K; Shioya S
    J Biosci Bioeng; 2006 Jun; 101(6):464-70. PubMed ID: 16935247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.