These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32029714)

  • 21. Electrohydrodynamic jet-printed zinc-tin oxide TFTs and their bias stability.
    Lee YG; Choi WS
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11167-72. PubMed ID: 25000343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet 'modes' and their implications for propulsive efficiency.
    Bartol IK; Krueger PS; Stewart WJ; Thompson JT
    J Exp Biol; 2009 Jun; 212(Pt 12):1889-903. PubMed ID: 19483007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designs and applications of electrohydrodynamic 3D printing.
    Gao D; Zhou JG
    Int J Bioprint; 2019; 5(1):172. PubMed ID: 32782979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin.
    Liu C; Huang N; Xu F; Tong J; Chen Z; Gui X; Fu Y; Lao C
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling.
    Fafenrot S; Grimmelsmann N; Wortmann M; Ehrmann A
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 29048347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of limited-view and three-dimensional reconstruction method for analysis of electrohydrodynamic jetting behavior.
    Gim Y; Shin DH; Moh DY; Ko HS
    Opt Express; 2017 Apr; 25(8):9244-9251. PubMed ID: 28438000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Additive-Free and Support-Free 3D Printing of Thermosetting Polymers with Isotropic Mechanical Properties.
    Mahmoudi M; Burlison SR; Moreno S; Minary-Jolandan M
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5529-5538. PubMed ID: 33476138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile and scalable fabrication of Ni cantilever nanoprobes using silicon template and micro-electroforming techniques for nano-tip focused electrohydrodynamic jet printing.
    Hu Y; Su S; Liang J; Xin W; Li X; Wang D
    Nanotechnology; 2021 Mar; 32(10):105301. PubMed ID: 33227721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Directionally Aligned Amorphous Polymer Chains via Electrohydrodynamic-Jet Printing: Analysis of Morphology and Polymer Field-Effect Transistor Characteristics.
    Kim Y; Bae J; Song HW; An TK; Kim SH; Kim YH; Park CE
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39493-39501. PubMed ID: 29058867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneously Defined Semiconducting Channel Layer Using Electrohydrodynamic Jet Printing of a Passivation Layer for Oxide Thin-Film Transistors.
    Hong S; Na JW; Lee IS; Kim HT; Kang BH; Chung J; Kim HJ
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39705-39712. PubMed ID: 32805908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms and modeling of electrohydrodynamic phenomena.
    Gao D; Yao D; Leist SK; Fei Y; Zhou J
    Int J Bioprint; 2019; 5(1):166. PubMed ID: 32782978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrohydrodynamic printing process monitoring by microscopic image identification.
    Sun J; Jing L; Fan X; Gao X; Liang YC
    Int J Bioprint; 2019; 5(1):164. PubMed ID: 32923733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation and Validation of Droplet Generation Process for Revealing Three Design Constraints in Electrohydrodynamic Jet Printing.
    Pan Y; Zeng L
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30699909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D Printing Methods for Pharmaceutical Manufacturing: Opportunity and Challenges.
    Warsi MH; Yusuf M; Al Robaian M; Khan M; Muheem A; Khan S
    Curr Pharm Des; 2018; 24(42):4949-4956. PubMed ID: 30520367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nozzle-jet printed flexible field-effect transistor biosensor for high performance glucose detection.
    Bhat KS; Ahmad R; Yoo JY; Hahn YB
    J Colloid Interface Sci; 2017 Nov; 506():188-196. PubMed ID: 28735192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D printed versus conventionally cured provisional crown and bridge dental materials.
    Tahayeri A; Morgan M; Fugolin AP; Bompolaki D; Athirasala A; Pfeifer CS; Ferracane JL; Bertassoni LE
    Dent Mater; 2018 Feb; 34(2):192-200. PubMed ID: 29110921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current Status and Prospects of Polymer Powder 3D Printing Technologies.
    Wang Y; Xu Z; Wu D; Bai J
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32456202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical Analysis of Ceramic/Polymer Composite with Mesh-Type Lightweight Design Using Binder-Jet 3D Printing.
    Kim DH; Lee J; Bae J; Park S; Choi J; Lee JH; Kim E
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30314331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micro/nanoscale electrohydrodynamic printing: from 2D to 3D.
    Zhang B; He J; Li X; Xu F; Li D
    Nanoscale; 2016 Aug; 8(34):15376-88. PubMed ID: 27479715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrohydrodynamic Printing of Microscale PEDOT:PSS-PEO Features with Tunable Conductive/Thermal Properties.
    Chang J; He J; Lei Q; Li D
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19116-19122. PubMed ID: 29745637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.