These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32029753)

  • 1. Subsurface Cooling Rates and Microstructural Response during Laser Based Metal Additive Manufacturing.
    Thampy V; Fong AY; Calta NP; Wang J; Martin AA; Depond PJ; Kiss AM; Guss G; Xing Q; Ott RT; van Buuren A; Toney MF; Weker JN; Kramer MJ; Matthews MJ; Tassone CJ; Stone KH
    Sci Rep; 2020 Feb; 10(1):1981. PubMed ID: 32029753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes.
    Calta NP; Wang J; Kiss AM; Martin AA; Depond PJ; Guss GM; Thampy V; Fong AY; Weker JN; Stone KH; Tassone CJ; Kramer MJ; Toney MF; Van Buuren A; Matthews MJ
    Rev Sci Instrum; 2018 May; 89(5):055101. PubMed ID: 29864819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pandora's Box-Influence of Contour Parameters on Roughness and Subsurface Residual Stresses in Laser Powder Bed Fusion of Ti-6Al-4V.
    Artzt K; Mishurova T; Bauer PP; Gussone J; Barriobero-Vila P; Evsevleev S; Bruno G; Requena G; Haubrich J
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32731434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On thermal properties of metallic powder in laser powder bed fusion additive manufacturing.
    Zhang S; Lane B; Whiting J; Chou K
    J Manuf Process; 2019; 47():. PubMed ID: 32855624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Powder Bed Temperature on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Fabricated via Laser Powder Bed Fusion.
    Xing LL; Zhang WJ; Zhao CC; Gao WQ; Shen ZJ; Liu W
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33924888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ investigation of phase transformations in Ti-6Al-4V under additive manufacturing conditions combining laser melting and high-speed micro-X-ray diffraction.
    Kenel C; Grolimund D; Li X; Panepucci E; Samson VA; Sanchez DF; Marone F; Leinenbach C
    Sci Rep; 2017 Nov; 7(1):16358. PubMed ID: 29180780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V.
    Mishurova T; Cabeza S; Artzt K; Haubrich J; Klaus M; Genzel C; Requena G; Bruno G
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction.
    Zhao C; Fezzaa K; Cunningham RW; Wen H; De Carlo F; Chen L; Rollett AD; Sun T
    Sci Rep; 2017 Jun; 7(1):3602. PubMed ID: 28620232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis.
    Bär F; Berger L; Jauer L; Kurtuldu G; Schäublin R; Schleifenbaum JH; Löffler JF
    Acta Biomater; 2019 Oct; 98():36-49. PubMed ID: 31132536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data related to architectural bone parameters and the relationship to Ti lattice design for powder bed fusion additive manufacturing.
    McGregor M; Patel S; McLachlin S; Vlasea M
    Data Brief; 2021 Dec; 39():107633. PubMed ID: 34917699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot isostatic pressing (HIP) to achieve isotropic microstructure and retain as-built strength in an additive manufacturing titanium alloy (Ti-6Al-4V).
    Benzing J; Hrabe N; Quinn T; White R; Rentz R; Ahlfors M
    Mater Lett; 2019; 257():. PubMed ID: 32116397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-State Phase Transformations in Thermally Treated Ti-6Al-4V Alloy Fabricated via Laser Powder Bed Fusion.
    Mengucci P; Santecchia E; Gatto A; Bassoli E; Sola A; Sciancalepore C; Rutkowski B; Barucca G
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31489893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-situ development of a sandwich microstructure with enhanced ductility by laser reheating of a laser melted titanium alloy.
    Chen X; Qiu C
    Sci Rep; 2020 Sep; 10(1):15870. PubMed ID: 32985532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Assessment of Thermokinetics and Associated Microstructural Evolution in Laser Powder Bed Fusion Manufacturing of Ti6Al4V Alloy.
    Pantawane MV; Ho YH; Joshi SS; Dahotre NB
    Sci Rep; 2020 May; 10(1):7579. PubMed ID: 32371890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data related to cyclic deformation and fatigue behavior of direct laser deposited Ti-6Al-4V with and without heat treatment.
    Sterling AJ; Torries B; Shamsaei N; Thompson SM
    Data Brief; 2016 Mar; 6():970-3. PubMed ID: 26949728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the Role of Epitaxial Grain Structure of the Prior β Phase and Associated Fiber Texture on the Strength Characteristics of Ti-6Al-4V Produced via Additive Manufacturing.
    Sangid MD; Nicolas A; Kapoor K; Fodran E; Madsen J
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructural and surface modifications and hydroxyapatite coating of Ti-6Al-4V triply periodic minimal surface lattices fabricated by selective laser melting.
    Yan C; Hao L; Hussein A; Wei Q; Shi Y
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1515-1524. PubMed ID: 28415445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Composite Powder Feedstock from Powder Bed Fusion Additive Manufacturing Perspective.
    Fereiduni E; Ghasemi A; Elbestawi M
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of grain orientation and phase on Volta potential differences in an additively manufactured titanium alloy.
    Benzing JT; Maryon OO; Hrabe N; Davis PH; Hurley MF; DelRio FW
    AIP Adv; 2021; 11(2):. PubMed ID: 34249471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties.
    Ter Haar GM; Becker TH
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29342079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.