BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32029769)

  • 1. Genetic manipulation of the pigment pathway in a sea urchin reveals distinct lineage commitment prior to metamorphosis in the bilateral to radial body plan transition.
    Wessel GM; Kiyomoto M; Shen TL; Yajima M
    Sci Rep; 2020 Feb; 10(1):1973. PubMed ID: 32029769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening.
    Calestani C; Rast JP; Davidson EH
    Development; 2003 Oct; 130(19):4587-96. PubMed ID: 12925586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene regulatory divergence amongst echinoderms underlies appearance of pigment cells in sea urchin development.
    Spurrell M; Oulhen N; Foster S; Perillo M; Wessel G
    Dev Biol; 2023 Feb; 494():13-25. PubMed ID: 36519720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sea Urchin Polyketide Synthase SpPks1 Produces the Naphthalene Precursor to Echinoderm Pigments.
    Li F; Lin Z; Torres JP; Hill EA; Li D; Townsend CA; Schmidt EW
    J Am Chem Soc; 2022 Jun; 144(21):9363-9371. PubMed ID: 35588530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression pattern of polyketide synthase-2 during sea urchin development.
    Beeble A; Calestani C
    Gene Expr Patterns; 2012; 12(1-2):7-10. PubMed ID: 22001775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic analysis of the highly derived radial body plan of a sea urchin.
    Wygoda JA; Yang Y; Byrne M; Wray GA
    Genome Biol Evol; 2014 Apr; 6(4):964-73. PubMed ID: 24696402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From larval bodies to adult body plans: patterning the development of the presumptive adult ectoderm in the sea urchin larva.
    Minsuk SB; Andrews ME; Raff RA
    Dev Genes Evol; 2005 Aug; 215(8):383-92. PubMed ID: 15834585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of the Hox gene complex in the indirect development of a sea urchin.
    Arenas-Mena C; Martinez P; Cameron RA; Davidson EH
    Proc Natl Acad Sci U S A; 1998 Oct; 95(22):13062-7. PubMed ID: 9789041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of knockout adult sea urchins by using a CRISPR-Cas9 system.
    Liu D; Awazu A; Sakuma T; Yamamoto T; Sakamoto N
    Dev Growth Differ; 2019 Aug; 61(6):378-388. PubMed ID: 31359433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of dynamic pigment cell states at single-cell resolution.
    Perillo M; Oulhen N; Foster S; Spurrell M; Calestani C; Wessel G
    Elife; 2020 Aug; 9():. PubMed ID: 32812865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin and behaviour of pigment cells in sea urchin embryos.
    Kominami T
    Zygote; 2000; 8 Suppl 1():S42-3. PubMed ID: 11191304
    [No Abstract]   [Full Text] [Related]  

  • 12. Pigment pattern evolution by differential deployment of neural crest and post-embryonic melanophore lineages in Danio fishes.
    Quigley IK; Turner JM; Nuckels RJ; Manuel JL; Budi EH; MacDonald EL; Parichy DM
    Development; 2004 Dec; 131(24):6053-69. PubMed ID: 15537688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pigmentation biosynthesis influences the microbiome in sea urchins.
    Wessel GM; Kiyomoto M; Reitzel AM; Carrier TJ
    Proc Biol Sci; 2022 Aug; 289(1981):20221088. PubMed ID: 35975446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axial patterning of the pentaradial adult echinoderm body plan.
    Minsuk SB; Turner FR; Andrews ME; Raff RA
    Dev Genes Evol; 2009 Feb; 219(2):89-101. PubMed ID: 19189123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromere-derived signal regulates larval left-right polarity during sea urchin development.
    Kitazawa C; Amemiya S
    J Exp Zool A Ecol Genet Physiol; 2007 May; 307(5):249-62. PubMed ID: 17351911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Larval and juvenile development of the Echinometrid sea urchin Colobocentrotus mertensii: emergence of the peculiar form of spines.
    Thet MM; Noguchi M; Yazaki I
    Zoolog Sci; 2004 Mar; 21(3):265-74. PubMed ID: 15056921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes.
    Solek CM; Oliveri P; Loza-Coll M; Schrankel CS; Ho EC; Wang G; Rast JP
    Dev Biol; 2013 Oct; 382(1):280-92. PubMed ID: 23792116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The polyketide synthase gene pks4 of Trichoderma reesei provides pigmentation and stress resistance.
    Atanasova L; Knox BP; Kubicek CP; Druzhinina IS; Baker SE
    Eukaryot Cell; 2013 Nov; 12(11):1499-508. PubMed ID: 24036343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ciliary photoreceptors in sea urchin larvae indicate pan-deuterostome cell type conservation.
    Valencia JE; Feuda R; Mellott DO; Burke RD; Peter IS
    BMC Biol; 2021 Dec; 19(1):257. PubMed ID: 34863182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.