BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32029795)

  • 1. Charge transport mechanism in networks of armchair graphene nanoribbons.
    Richter N; Chen Z; Tries A; Prechtl T; Narita A; Müllen K; Asadi K; Bonn M; Kläui M
    Sci Rep; 2020 Feb; 10(1):1988. PubMed ID: 32029795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational fabrication of graphene nanoribbons using a nanowire etch mask.
    Bai J; Duan X; Huang Y
    Nano Lett; 2009 May; 9(5):2083-7. PubMed ID: 19344151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the Number of Graphene Nanoribbons in Dual-Gate Field-Effect Transistors.
    Zhang J; Barin GB; Furrer R; Du CZ; Wang XY; Müllen K; Ruffieux P; Fasel R; Calame M; Perrin ML
    Nano Lett; 2023 Sep; 23(18):8474-8480. PubMed ID: 37671914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambipolar Transport in Solution-Synthesized Graphene Nanoribbons.
    Gao J; Uribe-Romo FJ; Saathoff JD; Arslan H; Crick CR; Hein SJ; Itin B; Clancy P; Dichtel WR; Loo YL
    ACS Nano; 2016 Apr; 10(4):4847-56. PubMed ID: 27046054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores.
    Shekhirev M; Zahl P; Sinitskii A
    ACS Nano; 2018 Aug; 12(8):8662-8669. PubMed ID: 30085655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Edge Contacts to Atomically Precise Graphene Nanoribbons.
    Huang W; Braun O; Indolese DI; Barin GB; Gandus G; Stiefel M; Olziersky A; Müllen K; Luisier M; Passerone D; Ruffieux P; Schönenberger C; Watanabe K; Taniguchi T; Fasel R; Zhang J; Calame M; Perrin ML
    ACS Nano; 2023 Oct; 17(19):18706-18715. PubMed ID: 37578964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons.
    Passi V; Gahoi A; Senkovskiy BV; Haberer D; Fischer FR; Grüneis A; Lemme MC
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):9900-9903. PubMed ID: 29516716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.
    Llinas JP; Fairbrother A; Borin Barin G; Shi W; Lee K; Wu S; Yong Choi B; Braganza R; Lear J; Kau N; Choi W; Chen C; Pedramrazi Z; Dumslaff T; Narita A; Feng X; Müllen K; Fischer F; Zettl A; Ruffieux P; Yablonovitch E; Crommie M; Fasel R; Bokor J
    Nat Commun; 2017 Sep; 8(1):633. PubMed ID: 28935943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoluminescent Semiconducting Graphene Nanoribbons via Longitudinally Unzipping Single-Walled Carbon Nanotubes.
    Li H; Zhang J; Gholizadeh AB; Brownless J; Fu Y; Cai W; Han Y; Duan T; Wang Y; Ling H; Leifer K; Curry R; Song A
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52892-52900. PubMed ID: 34719923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ribbon width on electrical transport properties of graphene nanoribbons.
    Bang K; Chee SS; Kim K; Son M; Jang H; Lee BH; Baik KH; Myoung JM; Ham MH
    Nano Converg; 2018; 5(1):7. PubMed ID: 29577013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ethylene oxide) Functionalized Graphene Nanoribbons with Excellent Solution Processability.
    Huang Y; Mai Y; Beser U; Teyssandier J; Velpula G; van Gorp H; Straasø LA; Hansen MR; Rizzo D; Casiraghi C; Yang R; Zhang G; Wu D; Zhang F; Yan D; De Feyter S; Müllen K; Feng X
    J Am Chem Soc; 2016 Aug; 138(32):10136-9. PubMed ID: 27463961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer-Free Synthesis of Atomically Precise Graphene Nanoribbons on Insulating Substrates.
    Mutlu Z; Llinas JP; Jacobse PH; Piskun I; Blackwell R; Crommie MF; Fischer FR; Bokor J
    ACS Nano; 2021 Feb; 15(2):2635-2642. PubMed ID: 33492120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlating atomic structure and transport in suspended graphene nanoribbons.
    Qi ZJ; Rodríguez-Manzo JA; Botello-Méndez AR; Hong SJ; Stach EA; Park YW; Charlier JC; Drndić M; Johnson AT
    Nano Lett; 2014 Aug; 14(8):4238-44. PubMed ID: 24954396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MoRe Electrodes with 10 nm Nanogaps for Electrical Contact to Atomically Precise Graphene Nanoribbons.
    Bouwmeester D; Ghiasi TS; Borin Barin G; Müllen K; Ruffieux P; Fasel R; van der Zant HSJ
    ACS Appl Nano Mater; 2023 Aug; 6(15):13935-13944. PubMed ID: 37588262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Charge Transport in Semiconducting Armchair Graphene Nanoribbons Grown Directly on Germanium.
    Jacobberger RM; Arnold MS
    ACS Nano; 2017 Sep; 11(9):8924-8929. PubMed ID: 28880526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic structure of epitaxial graphene sidewall nanoribbons: flat graphene, miniribbons, and the confinement gap.
    Palacio I; Celis A; Nair MN; Gloter A; Zobelli A; Sicot M; Malterre D; Nevius MS; de Heer WA; Berger C; Conrad EH; Taleb-Ibrahimi A; Tejeda A
    Nano Lett; 2015 Jan; 15(1):182-9. PubMed ID: 25457853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron-Lattice Coupling in Armchair Graphene Nanoribbons.
    de Oliveira Neto PH; Teixeira JF; da Cunha WF; Gargano R; E Silva GM
    J Phys Chem Lett; 2012 Oct; 3(20):3039-42. PubMed ID: 26292246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies.
    Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y
    ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photomodulation of Charge Transport in All-Semiconducting 2D-1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect.
    Liu Z; Qiu H; Wang C; Chen Z; Zyska B; Narita A; Ciesielski A; Hecht S; Chi L; Müllen K; Samorì P
    Adv Mater; 2020 Jul; 32(26):e2001268. PubMed ID: 32378243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the Conductance of Electronically Decoupled Graphene Nanoribbons.
    Jacobse PH; Mangnus MJJ; Zevenhuizen SJM; Swart I
    ACS Nano; 2018 Jul; 12(7):7048-7056. PubMed ID: 29939719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.