These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 32029859)
1. Optimal Mass Transport with Lagrangian Workflow Reveals Advective and Diffusion Driven Solute Transport in the Glymphatic System. Koundal S; Elkin R; Nadeem S; Xue Y; Constantinou S; Sanggaard S; Liu X; Monte B; Xu F; Van Nostrand W; Nedergaard M; Lee H; Wardlaw J; Benveniste H; Tannenbaum A Sci Rep; 2020 Feb; 10(1):1990. PubMed ID: 32029859 [TBL] [Abstract][Full Text] [Related]
2. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? Abbott NJ; Pizzo ME; Preston JE; Janigro D; Thorne RG Acta Neuropathol; 2018 Mar; 135(3):387-407. PubMed ID: 29428972 [TBL] [Abstract][Full Text] [Related]
3. Pathogenesis of Cerebral Small Vessel Disease: Role of the Glymphatic System Dysfunction. Lee DH; Lee EC; Park SW; Lee JY; Lee MR; Oh JS Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201439 [TBL] [Abstract][Full Text] [Related]
4. Neurofluid Dynamics and the Glymphatic System: A Neuroimaging Perspective. Taoka T; Naganawa S Korean J Radiol; 2020 Nov; 21(11):1199-1209. PubMed ID: 32783417 [TBL] [Abstract][Full Text] [Related]
5. Theoretical analysis of wake/sleep changes in brain solute transport suggests a flow of interstitial fluid. Thomas JH Fluids Barriers CNS; 2022 Apr; 19(1):30. PubMed ID: 35418142 [TBL] [Abstract][Full Text] [Related]
6. MRI of Whole Rat Brain Perivascular Network Reveals Role for Ventricles in Brain Waste Clearance. Magdoom KN; Brown A; Rey J; Mareci TH; King MA; Sarntinoranont M Sci Rep; 2019 Aug; 9(1):11480. PubMed ID: 31391474 [TBL] [Abstract][Full Text] [Related]
7. Uncertainty quantification of parenchymal tracer distribution using random diffusion and convective velocity fields. Croci M; Vinje V; Rognes ME Fluids Barriers CNS; 2019 Sep; 16(1):32. PubMed ID: 31564250 [TBL] [Abstract][Full Text] [Related]
8. Concomitant enlargement of perivascular spaces and decrease in glymphatic transport in an animal model of cerebral small vessel disease. Xue Y; Liu N; Zhang M; Ren X; Tang J; Fu J Brain Res Bull; 2020 Aug; 161():78-83. PubMed ID: 32353396 [TBL] [Abstract][Full Text] [Related]
9. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation. Gomolka RS; Hablitz LM; Mestre H; Giannetto M; Du T; Hauglund NL; Xie L; Peng W; Martinez PM; Nedergaard M; Mori Y Elife; 2023 Feb; 12():. PubMed ID: 36757363 [TBL] [Abstract][Full Text] [Related]
10. Impaired Glymphatic Transport in Spontaneously Hypertensive Rats. Mortensen KN; Sanggaard S; Mestre H; Lee H; Kostrikov S; Xavier ALR; Gjedde A; Benveniste H; Nedergaard M J Neurosci; 2019 Aug; 39(32):6365-6377. PubMed ID: 31209176 [TBL] [Abstract][Full Text] [Related]
11. The glymphatic hypothesis: the theory and the evidence. Hladky SB; Barrand MA Fluids Barriers CNS; 2022 Feb; 19(1):9. PubMed ID: 35115036 [TBL] [Abstract][Full Text] [Related]
12. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Mestre H; Hablitz LM; Xavier AL; Feng W; Zou W; Pu T; Monai H; Murlidharan G; Castellanos Rivera RM; Simon MJ; Pike MM; Plá V; Du T; Kress BT; Wang X; Plog BA; Thrane AS; Lundgaard I; Abe Y; Yasui M; Thomas JH; Xiao M; Hirase H; Asokan A; Iliff JJ; Nedergaard M Elife; 2018 Dec; 7():. PubMed ID: 30561329 [TBL] [Abstract][Full Text] [Related]
13. Convective influx/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Albargothy NJ; Johnston DA; MacGregor-Sharp M; Weller RO; Verma A; Hawkes CA; Carare RO Acta Neuropathol; 2018 Jul; 136(1):139-152. PubMed ID: 29754206 [TBL] [Abstract][Full Text] [Related]
14. CrossTalk proposal: The glymphatic system supports convective exchange of cerebrospinal fluid and brain interstitial fluid that is mediated by perivascular aquaporin-4. Iliff J; Simon M J Physiol; 2019 Sep; 597(17):4417-4419. PubMed ID: 31389028 [No Abstract] [Full Text] [Related]
15. The glymphatic pathway in neurological disorders. Rasmussen MK; Mestre H; Nedergaard M Lancet Neurol; 2018 Nov; 17(11):1016-1024. PubMed ID: 30353860 [TBL] [Abstract][Full Text] [Related]
16. The perivascular space is a conduit for cerebrospinal fluid flow in humans: A proof-of-principle report. Yamamoto EA; Bagley JH; Geltzeiler M; Sanusi OR; Dogan A; Liu JJ; Piantino J Proc Natl Acad Sci U S A; 2024 Oct; 121(42):e2407246121. PubMed ID: 39374384 [TBL] [Abstract][Full Text] [Related]
17. Computational modelling of fluid and solute transport in the brain. Martinac AD; Bilston LE Biomech Model Mechanobiol; 2020 Jun; 19(3):781-800. PubMed ID: 31720888 [TBL] [Abstract][Full Text] [Related]
18. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Holter KE; Kehlet B; Devor A; Sejnowski TJ; Dale AM; Omholt SW; Ottersen OP; Nagelhus EA; Mardal KA; Pettersen KH Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9894-9899. PubMed ID: 28847942 [TBL] [Abstract][Full Text] [Related]
19. Acute systemic LPS-exposure impairs perivascular CSF distribution in mice. Manouchehrian O; Ramos M; Bachiller S; Lundgaard I; Deierborg T J Neuroinflammation; 2021 Jan; 18(1):34. PubMed ID: 33514389 [TBL] [Abstract][Full Text] [Related]
20. Location-specific characteristics of perivascular spaces as the brain's interstitial fluid drainage system. Yamada S; Ishikawa M; Yamamoto K; Yamaguchi M; Oshima M J Neurol Sci; 2019 Mar; 398():9-15. PubMed ID: 30665070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]