These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32030112)

  • 1. Plasmonic Bubble Nucleation in Binary Liquids.
    Detert M; Zeng B; Wang Y; Le The H; Zandvliet HJW; Lohse D
    J Phys Chem C Nanomater Interfaces; 2020 Jan; 124(4):2591-2597. PubMed ID: 32030112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant and explosive plasmonic bubbles by delayed nucleation.
    Wang Y; Zaytsev ME; Lajoinie G; The HL; Eijkel JCT; van den Berg A; Versluis M; Weckhuysen BM; Zhang X; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7676-7681. PubMed ID: 29997175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Bubble Nucleation and Growth in Water: Effect of Dissolved Air.
    Li X; Wang Y; Zaytsev ME; Lajoinie G; Le The H; Bomer JG; Eijkel JCT; Zandvliet HJW; Zhang X; Lohse D
    J Phys Chem C Nanomater Interfaces; 2019 Sep; 123(38):23586-23593. PubMed ID: 31583035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces.
    Zeng B; Chong KL; Wang Y; Diddens C; Li X; Detert M; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34088844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Giant plasmonic bubbles nucleation under different ambient pressures.
    Zeng B; Wang Y; Zaytsev ME; Xia C; Zandvliet HJW; Lohse D
    Phys Rev E; 2020 Dec; 102(6-1):063109. PubMed ID: 33466073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Bubble Growth in Plasmonic Nanoparticle Suspension.
    Zhang Q; Neal RD; Huang D; Neretina S; Lee E; Luo T
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26680-26687. PubMed ID: 32402195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics and kinetics of vapor bubbles nucleation in one-component liquids.
    Alekseechkin NV
    J Phys Chem B; 2012 Aug; 116(31):9445-59. PubMed ID: 22804478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the activation energy barrier for the nucleation of single nanosized vapor bubbles.
    Chen J; Zhou K; Wang Y; Gao J; Yuan T; Pang J; Tang S; Chen HY; Wang W
    Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12678-12683. PubMed ID: 31189597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bubble evolution and properties in homogeneous nucleation simulations.
    Angélil R; Diemand J; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063301. PubMed ID: 25615216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vapor and Gas-Bubble Growth Dynamics around Laser-Irradiated, Water-Immersed Plasmonic Nanoparticles.
    Wang Y; Zaytsev ME; The HL; Eijkel JC; Zandvliet HJ; Zhang X; Lohse D
    ACS Nano; 2017 Feb; 11(2):2045-2051. PubMed ID: 28088847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas-vapor bubble nucleation--a unified approach.
    Kwak HY; Oh SD
    J Colloid Interface Sci; 2004 Oct; 278(2):436-46. PubMed ID: 15450464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted Nanoparticle Thermometry: A Method to Measure Local Temperature at the Nanoscale Point Where Water Vapor Nucleation Occurs.
    Alaulamie AA; Baral S; Johnson SC; Richardson HH
    Small; 2017 Jan; 13(1):. PubMed ID: 27699975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of entropy on the nucleation of cavitation bubbles in water under tension.
    Menzl G; Dellago C
    J Chem Phys; 2016 Dec; 145(21):211918. PubMed ID: 28799367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet plume emission during plasmonic bubble growth in ternary liquids.
    Li X; Chen Y; Wang Y; Chong KL; Verzicco R; Zandvliet HJW; Lohse D
    Phys Rev E; 2021 Aug; 104(2-2):025101. PubMed ID: 34525659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optically Driven Gold Nanoparticles Seed Surface Bubble Nucleation in Plasmonic Suspension.
    Zhang Q; Li R; Lee E; Luo T
    Nano Lett; 2021 Jul; 21(13):5485-5492. PubMed ID: 33939430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of vaporization and thermal decomposition in the dynamic evolution of laser-induced bubble on the surface of a submerged metal plate.
    Yuan X; Duan W; Wang K; Wang W; Fan Z; Lv J; Mei X
    Opt Express; 2024 Apr; 32(9):15691-15709. PubMed ID: 38859214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Momentum effects in steady nucleate pool boiling during microgravity.
    Merte H
    Ann N Y Acad Sci; 2004 Nov; 1027():196-216. PubMed ID: 15644357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stationary bubble formation and Marangoni convection induced by CW laser heating of a single gold nanoparticle.
    Setoura K; Ito S; Miyasaka H
    Nanoscale; 2017 Jan; 9(2):719-730. PubMed ID: 27959376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'Bubble chamber model' of fast atom bombardment induced processes.
    Kosevich MV; Shelkovsky VS; Boryak OA; Orlov VV
    Rapid Commun Mass Spectrom; 2003; 17(15):1781-92. PubMed ID: 12872284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-bubble dynamics in pool boiling of one-component fluids.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063002. PubMed ID: 25019874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.