BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32030512)

  • 1. Screening for CRISPR/Cas9-induced mutations using a co-injection marker in the nematode Pristionchus pacificus.
    Nakayama KI; Ishita Y; Chihara T; Okumura M
    Dev Genes Evol; 2020 May; 230(3):257-264. PubMed ID: 32030512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient visual screening of CRISPR/Cas9 genome editing in the nematode Pristionchus pacificus.
    Hiraga H; Ishita Y; Chihara T; Okumura M
    Dev Growth Differ; 2021 Dec; 63(9):488-500. PubMed ID: 34813661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome aware CRISPR gRNA target prediction for parasitic nematodes.
    O'Halloran DM
    Mol Biochem Parasitol; 2019 Jan; 227():25-28. PubMed ID: 30529475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene inactivation using the CRISPR/Cas9 system in the nematode Pristionchus pacificus.
    Witte H; Moreno E; Rödelsperger C; Kim J; Kim JS; Streit A; Sommer RJ
    Dev Genes Evol; 2015 Jan; 225(1):55-62. PubMed ID: 25548084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNAi mediated gene knockdown and transgenesis by microinjection in the necromenic Nematode Pristionchus pacificus.
    Cinkornpumin JK; Hong RL
    J Vis Exp; 2011 Oct; (56):e3270. PubMed ID: 22025167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions.
    Lo TW; Pickle CS; Lin S; Ralston EJ; Gurling M; Schartner CM; Bian Q; Doudna JA; Meyer BJ
    Genetics; 2013 Oct; 195(2):331-48. PubMed ID: 23934893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of mutations with dumpy-like phenotypes and of collagen genes in the nematode Pristionchus pacificus.
    Kenning C; Kipping I; Sommer RJ
    Genesis; 2004 Nov; 40(3):176-83. PubMed ID: 15493014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of zebrafish models by CRISPR /Cas9 genome editing.
    Hruscha A; Schmid B
    Methods Mol Biol; 2015; 1254():341-50. PubMed ID: 25431076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-Based Genome Editing of Transcription Factor Genes in Marchantia polymorpha.
    Sugano SS; Nishihama R
    Methods Mol Biol; 2018; 1830():109-126. PubMed ID: 30043367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome editing with CRISPR/Cas9 in Pinus radiata (D. Don).
    Poovaiah C; Phillips L; Geddes B; Reeves C; Sorieul M; Thorlby G
    BMC Plant Biol; 2021 Aug; 21(1):363. PubMed ID: 34376154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique.
    Gasanov EV; Jędrychowska J; Pastor M; Wiweger M; Methner A; Korzh VP
    Mol Biol Rep; 2021 Feb; 48(2):1951-1957. PubMed ID: 33481178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplified CRISPR-Mediated DNA Editing in Multicellular Eukaryotes.
    Kumar R; Tiwari K; Saudagar P
    Methods Mol Biol; 2023; 2575():241-260. PubMed ID: 36301478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple approach to mediate genome editing in the filamentous fungus Trichoderma reesei by CRISPR/Cas9-coupled in vivo gRNA transcription.
    Wu C; Chen Y; Qiu Y; Niu X; Zhu N; Chen J; Yao H; Wang W; Ma Y
    Biotechnol Lett; 2020 Jul; 42(7):1203-1210. PubMed ID: 32300998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean.
    Do PT; Nguyen CX; Bui HT; Tran LTN; Stacey G; Gillman JD; Zhang ZJ; Stacey MG
    BMC Plant Biol; 2019 Jul; 19(1):311. PubMed ID: 31307375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells.
    Liu W; Rudis MR; Cheplick MH; Millwood RJ; Yang JP; Ondzighi-Assoume CA; Montgomery GA; Burris KP; Mazarei M; Chesnut JD; Stewart CN
    Plant Cell Rep; 2020 Feb; 39(2):245-257. PubMed ID: 31728703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplification-free long-read sequencing reveals unforeseen CRISPR-Cas9 off-target activity.
    Höijer I; Johansson J; Gudmundsson S; Chin CS; Bunikis I; Häggqvist S; Emmanouilidou A; Wilbe M; den Hoed M; Bondeson ML; Feuk L; Gyllensten U; Ameur A
    Genome Biol; 2020 Dec; 21(1):290. PubMed ID: 33261648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The length of guide RNA and target DNA heteroduplex effects on CRISPR/Cas9 mediated genome editing efficiency in porcine cells.
    Lv J; Wu S; Wei R; Li Y; Jin J; Mu Y; Zhang Y; Kong Q; Weng X; Liu Z
    J Vet Sci; 2019 May; 20(3):e23. PubMed ID: 31161741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity.
    Basila M; Kelley ML; Smith AVB
    PLoS One; 2017; 12(11):e0188593. PubMed ID: 29176845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing.
    Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.