BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 32030759)

  • 1. In situ antitumor vaccination: Targeting the tumor microenvironment.
    Li H; Yu J; Wu Y; Shao B; Wei X
    J Cell Physiol; 2020 Jul; 235(7-8):5490-5500. PubMed ID: 32030759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convection-enhanced delivery of temozolomide and whole cell tumor immunizations in GL261 and KR158 experimental mouse gliomas.
    Enríquez Pérez J; Kopecky J; Visse E; Darabi A; Siesjö P
    BMC Cancer; 2020 Jan; 20(1):7. PubMed ID: 31900109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. At the bench: Engineering the next generation of cancer vaccines.
    Shae D; Baljon JJ; Wehbe M; Becker KW; Sheehy TL; Wilson JT
    J Leukoc Biol; 2020 Oct; 108(4):1435-1453. PubMed ID: 31430398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ vaccination for the treatment of cancer.
    Hammerich L; Bhardwaj N; Kohrt HE; Brody JD
    Immunotherapy; 2016; 8(3):315-30. PubMed ID: 26860335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy.
    Tiptiri-Kourpeti A; Spyridopoulou K; Pappa A; Chlichlia K
    Pharmacol Ther; 2016 Sep; 165():32-49. PubMed ID: 27235391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Local Radiation Therapy in Cancer Immunotherapy.
    Demaria S; Golden EB; Formenti SC
    JAMA Oncol; 2015 Dec; 1(9):1325-32. PubMed ID: 26270858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunomodulation of the Tumor Microenvironment: Turn Foe Into Friend.
    Locy H; de Mey S; de Mey W; De Ridder M; Thielemans K; Maenhout SK
    Front Immunol; 2018; 9():2909. PubMed ID: 30619273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of the Tumor Stroma Using a Consensus DNA Vaccine Targeting Fibroblast Activation Protein (FAP) Synergizes with Antitumor Vaccine Therapy in Mice.
    Duperret EK; Trautz A; Ammons D; Perales-Puchalt A; Wise MC; Yan J; Reed C; Weiner DB
    Clin Cancer Res; 2018 Mar; 24(5):1190-1201. PubMed ID: 29269377
    [No Abstract]   [Full Text] [Related]  

  • 9. Recombinant
    Deng W; Lira V; Hudson TE; Lemmens EE; Hanson WG; Flores R; Barajas G; Katibah GE; Desbien AL; Lauer P; Leong ML; Portnoy DA; Dubensky TW
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):8179-8184. PubMed ID: 30038013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CIMT 2017: Anniversary symposium - Report on the 15th CIMT Annual Meeting of the Association for Cancer Immunotherapy.
    Kranz LM; Beck JD; Grunwitz C; Hotz C; Vormehr M; Diken M
    Hum Vaccin Immunother; 2017 Oct; 13(10):2272-2279. PubMed ID: 28846471
    [No Abstract]   [Full Text] [Related]  

  • 11. CIMT 2014: Next waves in cancer immunotherapy--report on the 12th annual meeting of the Association for Cancer Immunotherapy: May 6–8 2014, Mainz, Germany.
    Diken M; Boegel S; Grunwitz C; Kranz LM; Reuter K; van de Roemer N; Vascotto F; Vormehr M; Kreiter S
    Hum Vaccin Immunother; 2014; 10(10):3090-100. PubMed ID: 25483671
    [No Abstract]   [Full Text] [Related]  

  • 12. Intratumoral CpG-B Promotes Antitumoral Neutrophil, cDC, and T-cell Cooperation without Reprograming Tolerogenic pDC.
    Humbert M; Guery L; Brighouse D; Lemeille S; Hugues S
    Cancer Res; 2018 Jun; 78(12):3280-3292. PubMed ID: 29588348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for improving the immunogenicity and efficacy of cancer vaccines.
    Pilla L; Ferrone S; Maccalli C
    Expert Opin Biol Ther; 2018 Jul; 18(7):765-784. PubMed ID: 29874943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irradiation Enhances Abscopal Anti-tumor Effects of Antigen-Specific Immunotherapy through Regulating Tumor Microenvironment.
    Chang MC; Chen YL; Lin HW; Chiang YC; Chang CF; Hsieh SF; Chen CA; Sun WZ; Cheng WF
    Mol Ther; 2018 Feb; 26(2):404-419. PubMed ID: 29248428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the tumor microenvironment to enhance antitumor immune responses.
    Van der Jeught K; Bialkowski L; Daszkiewicz L; Broos K; Goyvaerts C; Renmans D; Van Lint S; Heirman C; Thielemans K; Breckpot K
    Oncotarget; 2015 Jan; 6(3):1359-81. PubMed ID: 25682197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intratumoral Immunotherapy: From Trial Design to Clinical Practice.
    Champiat S; Tselikas L; Farhane S; Raoult T; Texier M; Lanoy E; Massard C; Robert C; Ammari S; De Baère T; Marabelle A
    Clin Cancer Res; 2021 Feb; 27(3):665-679. PubMed ID: 32943460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intratumoral immunotherapy: using the tumor as the remedy.
    Marabelle A; Tselikas L; de Baere T; Houot R
    Ann Oncol; 2017 Dec; 28(suppl_12):xii33-xii43. PubMed ID: 29253115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy.
    Phuengkham H; Ren L; Shin IW; Lim YT
    Adv Mater; 2019 Aug; 31(34):e1803322. PubMed ID: 30773696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination strategies to enhance the potency of monocyte-derived dendritic cell-based cancer vaccines.
    Fecek RJ; Storkus WJ
    Immunotherapy; 2016 Oct; 8(10):1205-18. PubMed ID: 27605069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting tumor-associated macrophages to synergize tumor immunotherapy.
    Xiang X; Wang J; Lu D; Xu X
    Signal Transduct Target Ther; 2021 Feb; 6(1):75. PubMed ID: 33619259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.