BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32030903)

  • 1. An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis.
    Guan C; Pan Y; Zhang T; Ajitha MJ; Huang KW
    Chem Asian J; 2020 Apr; 15(7):937-946. PubMed ID: 32030903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid.
    Wang X; Ling EAP; Guan C; Zhang Q; Wu W; Liu P; Zheng N; Zhang D; Lopatin S; Lai Z; Huang KW
    ChemSusChem; 2018 Oct; 11(20):3591-3598. PubMed ID: 30207639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions.
    Guo J; Yin CK; Zhong DL; Wang YL; Qi T; Liu GH; Shen LT; Zhou QS; Peng ZH; Yao H; Li XB
    ChemSusChem; 2021 Jul; 14(13):2655-2681. PubMed ID: 33963668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst.
    Bielinski EA; Lagaditis PO; Zhang Y; Mercado BQ; Würtele C; Bernskoetter WH; Hazari N; Schneider S
    J Am Chem Soc; 2014 Jul; 136(29):10234-7. PubMed ID: 24999607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.
    Bernskoetter WH; Hazari N
    Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Developments in Reversible CO
    Kushwaha S; Parthiban J; Singh SK
    ACS Omega; 2023 Oct; 8(42):38773-38793. PubMed ID: 37901502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formic acid as a hydrogen storage material - development of homogeneous catalysts for selective hydrogen release.
    Mellmann D; Sponholz P; Junge H; Beller M
    Chem Soc Rev; 2016 Jul; 45(14):3954-88. PubMed ID: 27119123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Catalyst Isomers Using an
    Curley JB; Hert C; Bernskoetter WH; Hazari N; Mercado BQ
    Inorg Chem; 2022 Jan; 61(1):643-656. PubMed ID: 34955015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anchoring and Upgrading Ultrafine NiPd on Room-Temperature-Synthesized Bifunctional NH
    Yan JM; Li SJ; Yi SS; Wulan BR; Zheng WT; Jiang Q
    Adv Mater; 2018 Mar; 30(12):e1703038. PubMed ID: 29411459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid.
    Xin Z; Zhang J; Sordakis K; Beller M; Du CX; Laurenczy G; Li Y
    ChemSusChem; 2018 Jul; 11(13):2077-2082. PubMed ID: 29722204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zeolite-Encaged Pd-Mn Nanocatalysts for CO
    Sun Q; Chen BWJ; Wang N; He Q; Chang A; Yang CM; Asakura H; Tanaka T; Hülsey MJ; Wang CH; Yu J; Yan N
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20183-20191. PubMed ID: 32770613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unprecedentedly high formic acid dehydrogenation activity on an iridium complex with an N,N'-diimine ligand in water.
    Wang Z; Lu SM; Li J; Wang J; Li C
    Chemistry; 2015 Sep; 21(36):12592-5. PubMed ID: 26202172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formic Acid Dehydrogenation over Ru- and Pd-Based Catalysts: Gas- vs. Liquid-Phase Reactions.
    Ruiz-López E; Ribota Peláez M; Blasco Ruz M; Domínguez Leal MI; Martínez Tejada M; Ivanova S; Centeno MÁ
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-Ligand Cooperation in Cp*Ir-Pyridylpyrrole Complexes: Rational Design and Catalytic Activity in Formic Acid Dehydrogenation and CO
    Mo XF; Liu C; Chen ZW; Ma F; He P; Yi XY
    Inorg Chem; 2021 Nov; 60(21):16584-16592. PubMed ID: 34637291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in Homogeneous Catalytic Dehydrogenation of Formic Acid.
    Onishi N; Kanega R; Kawanami H; Himeda Y
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromic hydroxide-decorated palladium nanoparticles confined by amine-functionalized mesoporous silica for rapid dehydrogenation of formic acid.
    Ding Y; Peng W; Zhang L; Xia J; Feng G; Lu ZH
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):879-887. PubMed ID: 36306599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PdAg Nanoparticles within Core-Shell Structured Zeolitic Imidazolate Framework as a Dual Catalyst for Formic Acid-based Hydrogen Storage/Production.
    Wen M; Mori K; Futamura Y; Kuwahara Y; Navlani-García M; An T; Yamashita H
    Sci Rep; 2019 Oct; 9(1):15675. PubMed ID: 31666596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Efficient Base-Free Dehydrogenation of Formic Acid at Low Temperature.
    Prichatz C; Trincado M; Tan L; Casas F; Kammer A; Junge H; Beller M; Grützmacher H
    ChemSusChem; 2018 Sep; 11(18):3092-3095. PubMed ID: 30062851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.