These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32030903)

  • 21. Highly Efficient Additive-Free Dehydrogenation of Neat Formic Acid.
    Kar S; Rauch M; Leitus G; Ben-David Y; Milstein D
    Nat Catal; 2021 Mar; 4():193-201. PubMed ID: 37152186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ligand Effect on the Stability of Water-Soluble Iridium Catalysts for High-Pressure Hydrogen Gas Production by Dehydrogenation of Formic Acid.
    Iguchi M; Onishi N; Himeda Y; Kawanami H
    Chemphyschem; 2019 May; 20(10):1296-1300. PubMed ID: 30884093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.
    Haibach MC; Kundu S; Brookhart M; Goldman AS
    Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CO
    Fink C; Laurenczy G
    Dalton Trans; 2017 Jan; 46(5):1670-1676. PubMed ID: 28098294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anchoring IrPdAu Nanoparticles on NH
    Luo Y; Yang Q; Nie W; Yao Q; Zhang Z; Lu ZH
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8082-8090. PubMed ID: 31986879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen Evolution from Additive-Free Formic Acid Dehydrogenation Using Weakly Basic Resin-Supported Pd Catalyst.
    Li L; Chen X; Zhang C; Zhang G; Liu Z
    ACS Omega; 2022 May; 7(17):14944-14951. PubMed ID: 35557660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CO
    Zhang S; Fan Q; Xia R; Meyer TJ
    Acc Chem Res; 2020 Jan; 53(1):255-264. PubMed ID: 31913013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics.
    Kumar A; Daw P; Milstein D
    Chem Rev; 2022 Jan; 122(1):385-441. PubMed ID: 34727501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols.
    Sordakis K; Tang C; Vogt LK; Junge H; Dyson PJ; Beller M; Laurenczy G
    Chem Rev; 2018 Jan; 118(2):372-433. PubMed ID: 28985048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid.
    Li SJ; Zhou YT; Kang X; Liu DX; Gu L; Zhang QH; Yan JM; Jiang Q
    Adv Mater; 2019 Apr; 31(15):e1806781. PubMed ID: 30803061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formate dehydrogenase activity by a Cu(II)-based molecular catalyst and deciphering the mechanism using DFT studies.
    Mishra A; Srivastava D; Raj D; Patra N; Padhi SK
    Dalton Trans; 2024 Jan; 53(3):1209-1220. PubMed ID: 38108489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A prolific catalyst for dehydrogenation of neat formic acid.
    Celaje JJ; Lu Z; Kedzie EA; Terrile NJ; Lo JN; Williams TJ
    Nat Commun; 2016 Apr; 7():11308. PubMed ID: 27076111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles.
    Akbayrak S
    J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient [Fe-Imidazole@SiO
    Gkatziouras C; Solakidou M; Louloudi M
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immobilization of palladium silver nanoparticles on NH
    Han J; Zhang Z; Hao Z; Li G; Liu T
    J Colloid Interface Sci; 2021 Apr; 587():736-742. PubMed ID: 33223240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of an Iridium-Based Catalyst for High-Pressure Evolution of Hydrogen from Formic Acid.
    Iguchi M; Himeda Y; Manaka Y; Kawanami H
    ChemSusChem; 2016 Oct; 9(19):2749-2753. PubMed ID: 27530918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient disproportionation of formic acid to methanol using molecular ruthenium catalysts.
    Savourey S; Lefèvre G; Berthet JC; Thuéry P; Genre C; Cantat T
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10466-70. PubMed ID: 25088282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal-free dehydrogenation of formic acid to H
    Chauvier C; Tlili A; Das Neves Gomes C; Thuéry P; Cantat T
    Chem Sci; 2015 May; 6(5):2938-2942. PubMed ID: 29308170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amine-Functionalized Carbon Bowl-Supported Pd-La(OH)
    Sun X; Zhang G; Yao Q; Li H; Feng G; Lu ZH
    Inorg Chem; 2022 Nov; 61(45):18102-18111. PubMed ID: 36325636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One site is enough: a theoretical investigation of iron-catalyzed dehydrogenation of formic Acid.
    Sánchez-de-Armas R; Xue L; Ahlquist MS
    Chemistry; 2013 Sep; 19(36):11869-73. PubMed ID: 23907850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.