BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32031058)

  • 1. Fabrication of Bioactive Inverted Colloidal Crystal Scaffolds Using Expanded Polystyrene Beads.
    Carpenter R; Macres D; Kwak JG; Daniel K; Lee J
    Tissue Eng Part C Methods; 2020 Mar; 26(3):143-155. PubMed ID: 32031058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoresponsive Inverted Colloidal Crystal Hydrogel Scaffolds for Lymphoid Tissue Engineering.
    Kwak JG; Lee J
    Adv Healthc Mater; 2020 Mar; 9(6):e1901556. PubMed ID: 32017462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds.
    Liu Y; Wang S; Krouse J; Kotov NA; Eghtedari M; Vargas G; Motamedi M
    J Biomed Mater Res A; 2007 Oct; 83(1):1-9. PubMed ID: 17335022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An overview of inverted colloidal crystal systems for tissue engineering.
    João CF; Vasconcelos JM; Silva JC; Borges JP
    Tissue Eng Part B Rev; 2014 Oct; 20(5):437-54. PubMed ID: 24328724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heparin-conjugated scaffolds with pore structure of inverted colloidal crystals for cartilage regeneration.
    Kuo YC; Tsai YT
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):616-23. PubMed ID: 21074384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity.
    Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA
    Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated nerve regeneration using induced pluripotent stem cells in chitin-chitosan-gelatin scaffolds with inverted colloidal crystal geometry.
    Kuo YC; Lin CC
    Colloids Surf B Biointerfaces; 2013 Mar; 103():595-600. PubMed ID: 23261585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Development in the Fabrication of Collagen Scaffolds for Tissue Engineering Applications: A Review.
    Busra MFM; Lokanathan Y
    Curr Pharm Biotechnol; 2019; 20(12):992-1003. PubMed ID: 31364511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverted colloidal crystal scaffolds for uniform cartilage regeneration.
    Kuo YC; Tsai YT
    Biomacromolecules; 2010 Mar; 11(3):731-9. PubMed ID: 20158195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
    Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P
    Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverted colloidal crystal scaffolds with induced pluripotent stem cells for nerve tissue engineering.
    Kuo YC; Chen CW
    Colloids Surf B Biointerfaces; 2013 Feb; 102():789-94. PubMed ID: 23107957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning.
    Xu F; Gough I; Dorogin J; Sheardown H; Hoare T
    Acta Biomater; 2020 Mar; 104():135-146. PubMed ID: 31904560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverted colloidal crystals as three-dimensional cell scaffolds.
    Kotov NA; Liu Y; Wang S; Cumming C; Eghtedari M; Vargas G; Motamedi M; Nichols J; Cortiella J
    Langmuir; 2004 Sep; 20(19):7887-92. PubMed ID: 15350047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering.
    Lewandowska-Łańcucka J; Fiejdasz S; Rodzik Ł; Kozieł M; Nowakowska M
    Biomed Mater; 2015 Feb; 10(1):015020. PubMed ID: 25668107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(lactic-co-glycolic acid) bone scaffolds with inverted colloidal crystal geometry.
    Cuddihy MJ; Kotov NA
    Tissue Eng Part A; 2008 Oct; 14(10):1639-49. PubMed ID: 18491955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling.
    Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N
    Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype.
    Floren M; Bonani W; Dharmarajan A; Motta A; Migliaresi C; Tan W
    Acta Biomater; 2016 Feb; 31():156-166. PubMed ID: 26621695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional highly porous hydrogel scaffold for neural circuit dissection and modulation.
    Yan M; Wang L; Wu Y; Wang L; Lu Y
    Acta Biomater; 2023 Feb; 157():252-262. PubMed ID: 36521677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of a matrigel-collagen semi-interpenetrating scaffold for use in dynamic valve interstitial cell culture.
    Lam NT; Lam H; Sturdivant NM; Balachandran K
    Biomed Mater; 2017 Jul; 12(4):045013. PubMed ID: 28484097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technology platform for facile handling of 3D hydrogel cell culture scaffolds.
    Pohlit H; Bohlin J; Katiyar N; Hilborn J; Tenje M
    Sci Rep; 2023 Aug; 13(1):12829. PubMed ID: 37550357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.