BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 32031065)

  • 1. Metabolic and Amino Acid Alterations of the Tumor Microenvironment.
    Stepka P; Vsiansky V; Raudenska M; Gumulec J; Adam V; Masarik M
    Curr Med Chem; 2021; 28(7):1270-1289. PubMed ID: 32031065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Warburg effect to Reverse Warburg effect; the new horizons of anti-cancer therapy.
    Benny S; Mishra R; Manojkumar MK; Aneesh TP
    Med Hypotheses; 2020 Nov; 144():110216. PubMed ID: 33254523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting the Warburg effect: historical dogma versus current understanding.
    Vaupel P; Multhoff G
    J Physiol; 2021 Mar; 599(6):1745-1757. PubMed ID: 33347611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2015 Oct; 34():111. PubMed ID: 26445347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect.
    Sun L; Suo C; Li ST; Zhang H; Gao P
    Biochim Biophys Acta Rev Cancer; 2018 Aug; 1870(1):51-66. PubMed ID: 29959989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical Modeling of the Function of Warburg Effect in Tumor Microenvironment.
    Shamsi M; Saghafian M; Dejam M; Sanati-Nezhad A
    Sci Rep; 2018 Jun; 8(1):8903. PubMed ID: 29891989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-scale computational study of the Warburg effect, reverse Warburg effect and glutamine addiction in solid tumors.
    Shan M; Dai D; Vudem A; Varner JD; Stroock AD
    PLoS Comput Biol; 2018 Dec; 14(12):e1006584. PubMed ID: 30532226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone metastatic breast cancer cells display downregulation of PKC-ζ with enhanced glutamine metabolism.
    Tandon M; Othman AH; Winogradzki M; Pratap J
    Gene; 2021 Apr; 775():145419. PubMed ID: 33444686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CAF cellular glycolysis: linking cancer cells with the microenvironment.
    Roy A; Bera S
    Tumour Biol; 2016 Jul; 37(7):8503-14. PubMed ID: 27075473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies.
    El Hassouni B; Granchi C; Vallés-Martí A; Supadmanaba IGP; Bononi G; Tuccinardi T; Funel N; Jimenez CR; Peters GJ; Giovannetti E; Minutolo F
    Semin Cancer Biol; 2020 Feb; 60():238-248. PubMed ID: 31445217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Warburg Effect, Lactate, and Nearly a Century of Trying to Cure Cancer.
    Spencer NY; Stanton RC
    Semin Nephrol; 2019 Jul; 39(4):380-393. PubMed ID: 31300093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Signature of Warburg Effect in Cancer: An Effective and Obligatory Interplay between Nutrient Transporters and Catabolic/Anabolic Pathways to Promote Tumor Growth.
    Mathew M; Nguyen NT; Bhutia YD; Sivaprakasam S; Ganapathy V
    Cancers (Basel); 2024 Jan; 16(3):. PubMed ID: 38339256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Even the Warburg effect can be oxidized: metabolic cooperation and tumor development].
    Cordier-Bussat M; Thibert C; Sujobert P; Genestier L; Fontaine É; Billaud M
    Med Sci (Paris); 2018; 34(8-9):701-708. PubMed ID: 30230466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma.
    Jiang E; Xu Z; Wang M; Yan T; Huang C; Zhou X; Liu Q; Wang L; Chen Y; Wang H; Liu K; Shao Z; Shang Z
    FASEB J; 2019 Apr; 33(4):5690-5703. PubMed ID: 30698991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting metabolic reprogramming in KRAS-driven cancers.
    Kawada K; Toda K; Sakai Y
    Int J Clin Oncol; 2017 Aug; 22(4):651-659. PubMed ID: 28647837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidic tumor microenvironment in human melanoma.
    Böhme I; Bosserhoff AK
    Pigment Cell Melanoma Res; 2016 Sep; 29(5):508-23. PubMed ID: 27233233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression.
    Li Z; Zhang H
    Cell Mol Life Sci; 2016 Jan; 73(2):377-92. PubMed ID: 26499846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic reprogramming in the arsenic carcinogenesis.
    Ruan Y; Fang X; Guo T; Liu Y; Hu Y; Wang X; Hu Y; Gao L; Li Y; Pi J; Xu Y
    Ecotoxicol Environ Saf; 2022 Jan; 229():113098. PubMed ID: 34952379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.