These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32031363)

  • 41. Ultrastable Sodium Storage in MoO
    Jiang Y; Sun M; Ni J; Li L
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37761-37767. PubMed ID: 31545031
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Concentration Gradient Induced Delithiation Failure of MoO
    Jang J; Kim HS; Moon S; Chae OB; Ahn SJ; Jung H; Choi J; Oh SM; Ryu JH; Yoon T
    Nano Lett; 2022 Jan; 22(2):761-767. PubMed ID: 35029396
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pyrolytic synthesis of MoO
    Cao D; Dai Y; Xie S; Wang H; Niu C
    J Colloid Interface Sci; 2018 Mar; 514():686-693. PubMed ID: 29310098
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molybdenum-doped tin oxide nanoflake arrays anchored on carbon foam as flexible anodes for sodium-ion batteries.
    Wang MY; Wang XL; Yao ZJ; Xie D; Xia XH; Gu CD; Tu JP
    J Colloid Interface Sci; 2020 Feb; 560():169-176. PubMed ID: 31670014
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface Passivation of MoO₃ Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes.
    Ahmed B; Shahid M; Nagaraju DH; Anjum DH; Hedhili MN; Alshareef HN
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13154-63. PubMed ID: 26039512
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reversible chemochromic MoO3 nanoribbons through zerovalent metal intercalation.
    Wang M; Koski KJ
    ACS Nano; 2015 Mar; 9(3):3226-33. PubMed ID: 25734624
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Brannerite-Type Vanadium-Molybdenum Oxide LiVMoO₆ as a Promising Anode Material for Lithium-Ion Batteries with High Capacity and Rate Capability.
    Chen N; Wang C; Hu F; Bie X; Wei Y; Chen G; Du F
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):16117-23. PubMed ID: 26154565
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conductive Binder for Si Anode with Boosted Charge Transfer Capability via n-Type Doping.
    Zhao Y; Yang L; Zuo Y; Song Z; Liu F; Li K; Pan F
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):27795-27800. PubMed ID: 30060660
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation of 2D Polyaniline/MoO
    Hu T; Xue B; Meng F; Ma L; Du Y; Yu S; Ye R; Li H; Zhang Q; Gu L; Zhou Z; Liang R; Tan C
    Adv Healthc Mater; 2023 Apr; 12(11):e2202911. PubMed ID: 36603589
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MoO
    Wu K; Zhan J; Xu G; Zhang C; Pan D; Wu M
    Nanoscale; 2018 Aug; 10(34):16040-16049. PubMed ID: 30106073
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel 2D Layered Molybdenum Ditelluride Encapsulated in Few-Layer Graphene as High-Performance Anode for Lithium-Ion Batteries.
    Ma N; Jiang XY; Zhang L; Wang XS; Cao YL; Zhang XZ
    Small; 2018 Apr; 14(14):e1703680. PubMed ID: 29488317
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries.
    Hao Q; Zhao D; Duan H; Zhou Q; Xu C
    Nanoscale; 2015 Mar; 7(12):5320-7. PubMed ID: 25721441
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbonization/oxidation-mediated synthesis of MOF-derived hollow nanocages of ZnO/N-doped carbon interwoven by carbon nanotubes for lithium-ion battery anodes.
    Moon JH; Oh MJ; Nam MG; Lee JH; Min GD; Park J; Kim WJ; Yoo PJ
    Dalton Trans; 2019 Aug; 48(31):11941-11950. PubMed ID: 31317154
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gel Polymer Electrolyte with High Li
    Wang Y; Fu L; Shi L; Wang Z; Zhu J; Zhao Y; Yuan S
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5168-5175. PubMed ID: 30648379
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computer Test of a Modified Silicene/Graphite Anode for Lithium-Ion Batteries.
    Galashev AY; Ivanichkina KA; Katin KP; Maslov MM
    ACS Omega; 2020 Jun; 5(22):13207-13218. PubMed ID: 32548507
    [TBL] [Abstract][Full Text] [Related]  

  • 56. One-dimensional architecture with reduced graphene oxide supporting ultrathin MoO
    Feng Y; Liu H
    Nanotechnology; 2019 Aug; 30(31):315602. PubMed ID: 30991376
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metal-Organic Framework Derived Porous Hollow Co
    Kang W; Zhang Y; Fan L; Zhang L; Dai F; Wang R; Sun D
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10602-10609. PubMed ID: 28287697
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability.
    Hu T; Sun X; Sun H; Xin G; Shao D; Liu C; Lian J
    Phys Chem Chem Phys; 2014 Jan; 16(3):1060-6. PubMed ID: 24287587
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Porous Carbon Paper as Interlayer to Stabilize the Lithium Anode for Lithium-Sulfur Battery.
    Kong LL; Zhang Z; Zhang YZ; Liu S; Li GR; Gao XP
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31684-31694. PubMed ID: 27805807
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Porous Co3O4/CuO composite assembled from nanosheets as high-performance anodes for lithium-ion batteries.
    Hao Q; Zhao D; Duan H; Xu C
    ChemSusChem; 2015 Apr; 8(8):1435-41. PubMed ID: 25828049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.