These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32031414)

  • 1. Impact of accumulated alterations in driver and passenger genes on response to radiation therapy.
    Seo Y; Tamari K; Takahashi Y; Minami K; Isohashi F; Suzuki O; Sumida I; Ogawa K
    Br J Radiol; 2020 May; 93(1109):20190625. PubMed ID: 32031414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of cancer-driver genes in focal genomic alterations from whole genome sequencing data.
    Jang H; Hur Y; Lee H
    Sci Rep; 2016 May; 6():25582. PubMed ID: 27156852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Landscape of Actionable Genomic Alterations in Cell-Free Circulating Tumor DNA from 21,807 Advanced Cancer Patients.
    Zill OA; Banks KC; Fairclough SR; Mortimer SA; Vowles JV; Mokhtari R; Gandara DR; Mack PC; Odegaard JI; Nagy RJ; Baca AM; Eltoukhy H; Chudova DI; Lanman RB; Talasaz A
    Clin Cancer Res; 2018 Aug; 24(15):3528-3538. PubMed ID: 29776953
    [No Abstract]   [Full Text] [Related]  

  • 4. [High throughput-targeted sequencing panel for exploring radiosensitivity associated genes in esophageal squamous cell carcinoma].
    Qiao Y; Hu CX; Song DA; Li SQ; Zhou LH; Jiang XD
    Zhonghua Zhong Liu Za Zhi; 2017 Aug; 39(8):584-588. PubMed ID: 28835080
    [No Abstract]   [Full Text] [Related]  

  • 5. [Lung cancer molecular testing, what role for Next Generation Sequencing and circulating tumor DNA].
    Pécuchet N; Legras A; Laurent-Puig P; Blons H
    Ann Pathol; 2016 Jan; 36(1):80-93. PubMed ID: 26803564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring causal genomic alterations in breast cancer using gene expression data.
    Tran LM; Zhang B; Zhang Z; Zhang C; Xie T; Lamb JR; Dai H; Schadt EE; Zhu J
    BMC Syst Biol; 2011 Aug; 5():121. PubMed ID: 21806811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DrGaP: a powerful tool for identifying driver genes and pathways in cancer sequencing studies.
    Hua X; Xu H; Yang Y; Zhu J; Liu P; Lu Y
    Am J Hum Genet; 2013 Sep; 93(3):439-51. PubMed ID: 23954162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes.
    Bányai L; Trexler M; Kerekes K; Csuka O; Patthy L
    Elife; 2021 Jan; 10():. PubMed ID: 33427197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-based analysis of prostate cancer cell lines reveals novel marker gene candidates associated with radioresistance and patient relapse.
    Seifert M; Peitzsch C; Gorodetska I; Börner C; Klink B; Dubrovska A
    PLoS Comput Biol; 2019 Nov; 15(11):e1007460. PubMed ID: 31682594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.
    Wei PJ; Zhang D; Xia J; Zheng CH
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):467. PubMed ID: 28155630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of different functional prediction scores using a gene-based permutation model for identifying cancer driver genes.
    Nono AD; Chen K; Liu X
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):22. PubMed ID: 30704472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins.
    Rozenblatt-Rosen O; Deo RC; Padi M; Adelmant G; Calderwood MA; Rolland T; Grace M; Dricot A; Askenazi M; Tavares M; Pevzner SJ; Abderazzaq F; Byrdsong D; Carvunis AR; Chen AA; Cheng J; Correll M; Duarte M; Fan C; Feltkamp MC; Ficarro SB; Franchi R; Garg BK; Gulbahce N; Hao T; Holthaus AM; James R; Korkhin A; Litovchick L; Mar JC; Pak TR; Rabello S; Rubio R; Shen Y; Singh S; Spangle JM; Tasan M; Wanamaker S; Webber JT; Roecklein-Canfield J; Johannsen E; Barabási AL; Beroukhim R; Kieff E; Cusick ME; Hill DE; Münger K; Marto JA; Quackenbush J; Roth FP; DeCaprio JA; Vidal M
    Nature; 2012 Jul; 487(7408):491-5. PubMed ID: 22810586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MutComFocal: an integrative approach to identifying recurrent and focal genomic alterations in tumor samples.
    Trifonov V; Pasqualucci L; Dalla Favera R; Rabadan R
    BMC Syst Biol; 2013 Mar; 7():25. PubMed ID: 23531283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative oncogenomic analysis of copy number alterations in human and zebrafish tumors enables cancer driver discovery.
    Zhang G; Hoersch S; Amsterdam A; Whittaker CA; Beert E; Catchen JM; Farrington S; Postlethwait JH; Legius E; Hopkins N; Lees JA
    PLoS Genet; 2013 Aug; 9(8):e1003734. PubMed ID: 24009526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal.
    Sun JX; He Y; Sanford E; Montesion M; Frampton GM; Vignot S; Soria JC; Ross JS; Miller VA; Stephens PJ; Lipson D; Yelensky R
    PLoS Comput Biol; 2018 Feb; 14(2):e1005965. PubMed ID: 29415044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes.
    Cheng F; Zhao J; Zhao Z
    Brief Bioinform; 2016 Jul; 17(4):642-56. PubMed ID: 26307061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive catalogue of somatic mutations from a human cancer genome.
    Pleasance ED; Cheetham RK; Stephens PJ; McBride DJ; Humphray SJ; Greenman CD; Varela I; Lin ML; Ordóñez GR; Bignell GR; Ye K; Alipaz J; Bauer MJ; Beare D; Butler A; Carter RJ; Chen L; Cox AJ; Edkins S; Kokko-Gonzales PI; Gormley NA; Grocock RJ; Haudenschild CD; Hims MM; James T; Jia M; Kingsbury Z; Leroy C; Marshall J; Menzies A; Mudie LJ; Ning Z; Royce T; Schulz-Trieglaff OB; Spiridou A; Stebbings LA; Szajkowski L; Teague J; Williamson D; Chin L; Ross MT; Campbell PJ; Bentley DR; Futreal PA; Stratton MR
    Nature; 2010 Jan; 463(7278):191-6. PubMed ID: 20016485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic basis for RNA alterations in cancer.
    ; Calabrese C; Davidson NR; Demircioğlu D; Fonseca NA; He Y; Kahles A; Lehmann KV; Liu F; Shiraishi Y; Soulette CM; Urban L; Greger L; Li S; Liu D; Perry MD; Xiang Q; Zhang F; Zhang J; Bailey P; Erkek S; Hoadley KA; Hou Y; Huska MR; Kilpinen H; Korbel JO; Marin MG; Markowski J; Nandi T; Pan-Hammarström Q; Pedamallu CS; Siebert R; Stark SG; Su H; Tan P; Waszak SM; Yung C; Zhu S; Awadalla P; Creighton CJ; Meyerson M; Ouellette BFF; Wu K; Yang H; ; Brazma A; Brooks AN; Göke J; Rätsch G; Schwarz RF; Stegle O; Zhang Z;
    Nature; 2020 Feb; 578(7793):129-136. PubMed ID: 32025019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exome sequencing reveals comprehensive genomic alterations across eight cancer cell lines.
    Chang H; Jackson DG; Kayne PS; Ross-Macdonald PB; Ryseck RP; Siemers NO
    PLoS One; 2011; 6(6):e21097. PubMed ID: 21701589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Discovery of Mutated Driver Pathways in Cancer: Models and Algorithms.
    Zhang J; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):988-998. PubMed ID: 28113329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.