These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 32031597)

  • 21. A Chemical Approach for the Detection of Protein Sulfinylation.
    Lo Conte M; Lin J; Wilson MA; Carroll KS
    ACS Chem Biol; 2015 Aug; 10(8):1825-30. PubMed ID: 26039147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomic approaches to the characterization of protein thiol modification.
    Chouchani ET; James AM; Fearnley IM; Lilley KS; Murphy MP
    Curr Opin Chem Biol; 2011 Feb; 15(1):120-8. PubMed ID: 21130020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis.
    Chan HL; Gharbi S; Gaffney PR; Cramer R; Waterfield MD; Timms JF
    Proteomics; 2005 Jul; 5(11):2908-26. PubMed ID: 15954156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia.
    Izquierdo-Álvarez A; Ramos E; Villanueva J; Hernansanz-Agustín P; Fernández-Rodríguez R; Tello D; Carrascal M; Martínez-Ruiz A
    J Proteomics; 2012 Sep; 75(17):5449-62. PubMed ID: 22800641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lysines and cysteines: partners in stress?
    Rabe von Pappenheim F; Tittmann K
    Trends Biochem Sci; 2022 May; 47(5):372-374. PubMed ID: 35427478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation.
    Boronat S; García-Santamarina S; Hidalgo E
    Free Radic Res; 2015 May; 49(5):494-510. PubMed ID: 25782062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms and consequences of protein cysteine oxidation: the role of the initial short-lived intermediates.
    Turell L; Zeida A; Trujillo M
    Essays Biochem; 2020 Feb; 64(1):55-66. PubMed ID: 31919496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical modification of proteins at cysteine: opportunities in chemistry and biology.
    Chalker JM; Bernardes GJ; Lin YA; Davis BG
    Chem Asian J; 2009 May; 4(5):630-40. PubMed ID: 19235822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species.
    Cooper CE; Patel RP; Brookes PS; Darley-Usmar VM
    Trends Biochem Sci; 2002 Oct; 27(10):489-92. PubMed ID: 12368076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L; Robinson RA
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of protein function and signaling by reversible cysteine S-nitrosylation.
    Gould N; Doulias PT; Tenopoulou M; Raju K; Ischiropoulos H
    J Biol Chem; 2013 Sep; 288(37):26473-9. PubMed ID: 23861393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell-permeable small molecule probes for site-specific labeling of proteins.
    Yeo DS; Srinivasan R; Uttamchandani M; Chen GY; Zhu Q; Yao SQ
    Chem Commun (Camb); 2003 Dec; (23):2870-1. PubMed ID: 14680216
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of sulfenylation patterns in trophozoite stage Plasmodium falciparum using a non-dimedone based probe.
    Schipper S; Wu H; Furdui CM; Poole LB; Delahunty CM; Park R; Yates JR; Becker K; Przyborski JM
    Mol Biochem Parasitol; 2021 Mar; 242():111362. PubMed ID: 33513391
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation.
    Mieyal JJ; Chock PB
    Antioxid Redox Signal; 2012 Mar; 16(6):471-5. PubMed ID: 22136616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying Functional Cysteine Residues in the Mitochondria.
    Bak DW; Pizzagalli MD; Weerapana E
    ACS Chem Biol; 2017 Apr; 12(4):947-957. PubMed ID: 28157297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The PEG-switch assay: a fast semi-quantitative method to determine protein reversible cysteine oxidation.
    Burgoyne JR; Oviosu O; Eaton P
    J Pharmacol Toxicol Methods; 2013; 68(3):297-301. PubMed ID: 23856010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteome screens for Cys residues oxidation: the redoxome.
    Chiappetta G; Ndiaye S; Igbaria A; Kumar C; Vinh J; Toledano MB
    Methods Enzymol; 2010; 473():199-216. PubMed ID: 20513479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical methods for mapping cysteine oxidation.
    Alcock LJ; Perkins MV; Chalker JM
    Chem Soc Rev; 2018 Jan; 47(1):231-268. PubMed ID: 29242887
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-Specific Proteomic Mapping of Modified Cysteine Residues.
    Gould NS
    Methods Mol Biol; 2019; 1967():183-195. PubMed ID: 31069771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative label-free redox proteomics of reversible cysteine oxidation in red blood cell membranes.
    Zaccarin M; Falda M; Roveri A; Bosello-Travain V; Bordin L; Maiorino M; Ursini F; Toppo S
    Free Radic Biol Med; 2014 Jun; 71():90-98. PubMed ID: 24642086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.