These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 32031597)
21. A Chemical Approach for the Detection of Protein Sulfinylation. Lo Conte M; Lin J; Wilson MA; Carroll KS ACS Chem Biol; 2015 Aug; 10(8):1825-30. PubMed ID: 26039147 [TBL] [Abstract][Full Text] [Related]
22. Proteomic approaches to the characterization of protein thiol modification. Chouchani ET; James AM; Fearnley IM; Lilley KS; Murphy MP Curr Opin Chem Biol; 2011 Feb; 15(1):120-8. PubMed ID: 21130020 [TBL] [Abstract][Full Text] [Related]
23. Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis. Chan HL; Gharbi S; Gaffney PR; Cramer R; Waterfield MD; Timms JF Proteomics; 2005 Jul; 5(11):2908-26. PubMed ID: 15954156 [TBL] [Abstract][Full Text] [Related]
24. Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia. Izquierdo-Álvarez A; Ramos E; Villanueva J; Hernansanz-Agustín P; Fernández-Rodríguez R; Tello D; Carrascal M; Martínez-Ruiz A J Proteomics; 2012 Sep; 75(17):5449-62. PubMed ID: 22800641 [TBL] [Abstract][Full Text] [Related]
25. Lysines and cysteines: partners in stress? Rabe von Pappenheim F; Tittmann K Trends Biochem Sci; 2022 May; 47(5):372-374. PubMed ID: 35427478 [TBL] [Abstract][Full Text] [Related]
26. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation. Boronat S; García-Santamarina S; Hidalgo E Free Radic Res; 2015 May; 49(5):494-510. PubMed ID: 25782062 [TBL] [Abstract][Full Text] [Related]
27. Mechanisms and consequences of protein cysteine oxidation: the role of the initial short-lived intermediates. Turell L; Zeida A; Trujillo M Essays Biochem; 2020 Feb; 64(1):55-66. PubMed ID: 31919496 [TBL] [Abstract][Full Text] [Related]
28. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chalker JM; Bernardes GJ; Lin YA; Davis BG Chem Asian J; 2009 May; 4(5):630-40. PubMed ID: 19235822 [TBL] [Abstract][Full Text] [Related]
29. Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species. Cooper CE; Patel RP; Brookes PS; Darley-Usmar VM Trends Biochem Sci; 2002 Oct; 27(10):489-92. PubMed ID: 12368076 [TBL] [Abstract][Full Text] [Related]
30. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases. Gu L; Robinson RA Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938 [TBL] [Abstract][Full Text] [Related]
31. Regulation of protein function and signaling by reversible cysteine S-nitrosylation. Gould N; Doulias PT; Tenopoulou M; Raju K; Ischiropoulos H J Biol Chem; 2013 Sep; 288(37):26473-9. PubMed ID: 23861393 [TBL] [Abstract][Full Text] [Related]
32. Cell-permeable small molecule probes for site-specific labeling of proteins. Yeo DS; Srinivasan R; Uttamchandani M; Chen GY; Zhu Q; Yao SQ Chem Commun (Camb); 2003 Dec; (23):2870-1. PubMed ID: 14680216 [TBL] [Abstract][Full Text] [Related]
33. Identification of sulfenylation patterns in trophozoite stage Plasmodium falciparum using a non-dimedone based probe. Schipper S; Wu H; Furdui CM; Poole LB; Delahunty CM; Park R; Yates JR; Becker K; Przyborski JM Mol Biochem Parasitol; 2021 Mar; 242():111362. PubMed ID: 33513391 [TBL] [Abstract][Full Text] [Related]
34. Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation. Mieyal JJ; Chock PB Antioxid Redox Signal; 2012 Mar; 16(6):471-5. PubMed ID: 22136616 [TBL] [Abstract][Full Text] [Related]
35. Identifying Functional Cysteine Residues in the Mitochondria. Bak DW; Pizzagalli MD; Weerapana E ACS Chem Biol; 2017 Apr; 12(4):947-957. PubMed ID: 28157297 [TBL] [Abstract][Full Text] [Related]
36. The PEG-switch assay: a fast semi-quantitative method to determine protein reversible cysteine oxidation. Burgoyne JR; Oviosu O; Eaton P J Pharmacol Toxicol Methods; 2013; 68(3):297-301. PubMed ID: 23856010 [TBL] [Abstract][Full Text] [Related]