These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 32031597)
41. Redox Proteomics Applied to the Thiol Secretome. Ghezzi P; Chan P Antioxid Redox Signal; 2017 Mar; 26(7):299-312. PubMed ID: 27139336 [TBL] [Abstract][Full Text] [Related]
42. Proteomics approaches to study the redox state of cysteine-containing proteins. Camerini S; Polci ML; Bachi A Ann Ist Super Sanita; 2005; 41(4):451-7. PubMed ID: 16569913 [TBL] [Abstract][Full Text] [Related]
43. Gel-based methods in redox proteomics. Charles R; Jayawardhana T; Eaton P Biochim Biophys Acta; 2014 Feb; 1840(2):830-7. PubMed ID: 23624333 [TBL] [Abstract][Full Text] [Related]
44. [Redox modifications of cysteine residues in plant proteins]. Szworst-Łupina D; Rusinowski Z; Zagdańska B Postepy Biochem; 2015; 61(2):191-7. PubMed ID: 26689012 [TBL] [Abstract][Full Text] [Related]
45. The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies. Heppner DE; Janssen-Heininger YMW; van der Vliet A Arch Biochem Biophys; 2017 Feb; 616():40-46. PubMed ID: 28126370 [TBL] [Abstract][Full Text] [Related]
46. A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: oxidized cysteine-selective dimethylation (OxcysDML). Gu L; Robinson RA Anal Bioanal Chem; 2016 Apr; 408(11):2993-3004. PubMed ID: 26800981 [TBL] [Abstract][Full Text] [Related]
47. Global methods to monitor the thiol-disulfide state of proteins in vivo. Leichert LI; Jakob U Antioxid Redox Signal; 2006; 8(5-6):763-72. PubMed ID: 16771668 [TBL] [Abstract][Full Text] [Related]
48. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Guo J; Gaffrey MJ; Su D; Liu T; Camp DG; Smith RD; Qian WJ Nat Protoc; 2014 Jan; 9(1):64-75. PubMed ID: 24336471 [TBL] [Abstract][Full Text] [Related]
49. Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay. Murray CI; Uhrigshardt H; O'Meally RN; Cole RN; Van Eyk JE Mol Cell Proteomics; 2012 Feb; 11(2):M111.013441. PubMed ID: 22126794 [TBL] [Abstract][Full Text] [Related]
54. Low-Toxicity Sulfonium-Based Probes for Cysteine-Specific Profiling in Live Cells. Wang R; Yang D; Tian T; An Y; Wan C; Chang Q; Liang M; Hou Z; Wang Y; Zhang L; Li Z Anal Chem; 2022 Mar; 94(10):4366-4372. PubMed ID: 35244395 [TBL] [Abstract][Full Text] [Related]
55. Redox signalling via the cellular thiolstat. Jacob C Biochem Soc Trans; 2011 Oct; 39(5):1247-53. PubMed ID: 21936797 [TBL] [Abstract][Full Text] [Related]
56. Oxidative Post-Translational Modifications: A Focus on Cysteine Bibli SI; Fleming I Antioxid Redox Signal; 2021 Dec; 35(18):1494-1514. PubMed ID: 34346251 [No Abstract] [Full Text] [Related]
57. Using DCP-Rho1 as a fluorescent probe to visualize sulfenic acid-containing proteins in living plant cells. Lara-Rojas F; Sarmiento-López LG; Pascual-Morales E; Ryken SE; Bezanilla M; Cardenas L Methods Enzymol; 2023; 683():291-308. PubMed ID: 37087193 [TBL] [Abstract][Full Text] [Related]
58. A critical evaluation of probes for cysteine sulfenic acid. Pople JMM; Chalker JM Curr Opin Chem Biol; 2021 Feb; 60():55-65. PubMed ID: 32866852 [TBL] [Abstract][Full Text] [Related]
59. Measurement of protein sulfhydryls in response to cellular oxidative stress using gel electrophoresis and multiplexed fluorescent imaging analysis. Spiess PC; Morin D; Jewell WT; Buckpitt AR Chem Res Toxicol; 2008 May; 21(5):1074-85. PubMed ID: 18416539 [TBL] [Abstract][Full Text] [Related]
60. SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites. Al-Barakati HJ; McConnell EW; Hicks LM; Poole LB; Newman RH; Kc DB Sci Rep; 2018 Jul; 8(1):11288. PubMed ID: 30050050 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]