BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32031662)

  • 21. Chlorophyll fluorescence parameters, leaf traits and foliar chemistry of white oak and red maple trees in urban forest patches.
    Sonti NF; Hallett RA; Griffin KL; Trammell TLE; Sullivan JH
    Tree Physiol; 2021 Feb; 41(2):269-279. PubMed ID: 33313756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drought and air warming affect the species-specific levels of stress-related foliar metabolites of three oak species on acidic and calcareous soil.
    Hu B; Simon J; Rennenberg H
    Tree Physiol; 2013 May; 33(5):489-504. PubMed ID: 23619385
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012.
    Geron C; Daly R; Harley P; Rasmussen R; Seco R; Guenther A; Karl T; Gu L
    Chemosphere; 2016 Mar; 146():8-21. PubMed ID: 26706927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphological and Phylogenetic Resolution of
    Ferreira SL; Stauder CM; Martin DKH; Kasson MT
    Plant Dis; 2021 May; 105(5):1298-1307. PubMed ID: 32852252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A hyperspectral image can predict tropical tree growth rates in single-species stands.
    Caughlin TT; Graves SJ; Asner GP; van Breugel M; Hall JS; Martin RE; Ashton MS; Bohlman SA
    Ecol Appl; 2016 Dec; 26(8):2367-2373. PubMed ID: 27907255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vibrational spectroscopic profiling of biomolecular interactions between oak powdery mildew and oak leaves.
    Clark KR; Goldberg Oppenheimer P
    Soft Matter; 2024 Jan; 20(5):959-970. PubMed ID: 38189096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Community structures of N2 -fixing bacteria associated with the phyllosphere of a Holm oak forest and their response to drought.
    Rico L; Ogaya R; Terradas J; Peñuelas J
    Plant Biol (Stuttg); 2014 May; 16(3):586-93. PubMed ID: 23952768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy investment in leaves of red maple and co-occurring oaks within a forested watershed.
    Nagel JM; Griffin KL; Schuster WS; Tissue DT; Turnbull MH; Brown KJ; Whitehead D
    Tree Physiol; 2002 Aug; 22(12):859-67. PubMed ID: 12184975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative Spatial Modeling of
    Stevens C; Zhu J; Bushman M; Huang J
    Phytopathology; 2024 Mar; 114(3):603-617. PubMed ID: 37717228
    [No Abstract]   [Full Text] [Related]  

  • 30. Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest.
    Sperlich D; Chang CT; Peñuelas J; Gracia C; Sabaté S
    Tree Physiol; 2015 May; 35(5):501-20. PubMed ID: 25836361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of dust on forest tree health in Zagros oak forests.
    Moradi A; Taheri Abkenar K; Afshar Mohammadian M; Shabanian N
    Environ Monit Assess; 2017 Oct; 189(11):549. PubMed ID: 28993926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mortality due to Japanese oak wilt disease and surrounding forest compositions.
    Oguro M; Imahiro S; Saito S; Nakashizuka T
    Data Brief; 2015 Dec; 5():208-12. PubMed ID: 26543883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multi-proxy assessment of dieback causes in a Mediterranean oak species.
    Colangelo M; Camarero JJ; Battipaglia G; Borghetti M; De Micco V; Gentilesca T; Ripullone F
    Tree Physiol; 2017 May; 37(5):617-631. PubMed ID: 28338766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First Report of Oak Anthracnose Caused by Apiognomonia errabunda on Oriental White Oak in Korea.
    Lee CK; Lee SH; Park JH; Cho SE; Shin HD
    Plant Dis; 2013 Aug; 97(8):1121. PubMed ID: 30722502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability.
    Turnbull MH; Whitehead D; Tissue DT; Schuster WS; Brown KJ; Engel VC; Griffin KL
    Oecologia; 2002 Feb; 130(4):515-524. PubMed ID: 28547252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soil microbial communities buffer physiological responses to drought stress in three hardwood species.
    Kannenberg SA; Phillips RP
    Oecologia; 2017 Mar; 183(3):631-641. PubMed ID: 27896478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological and phenological responses of oak seedlings to oak forest soil in the absence of trees.
    Dickie IA; Montgomery RA; Reich PB; Schnitzer SA
    Tree Physiol; 2007 Jan; 27(1):133-40. PubMed ID: 17169914
    [TBL] [Abstract][Full Text] [Related]  

  • 38. European oak chemical diversity - from ecotypes to herbivore resistance.
    Bertić M; Schroeder H; Kersten B; Fladung M; Orgel F; Buegger F; Schnitzler JP; Ghirardo A
    New Phytol; 2021 Oct; 232(2):818-834. PubMed ID: 34240433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Leaf spectroscopy of resistance to Ceratocystis wilt of 'Ōhi'a.
    Seeley MM; Martin RE; Giardina C; Luiz B; Francisco K; Cook Z; Hughes MA; Asner GP
    PLoS One; 2023; 18(6):e0287144. PubMed ID: 37352315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides).
    Ramírez-Valiente JA; Cavender-Bares J
    Tree Physiol; 2017 Jul; 37(7):889-901. PubMed ID: 28419347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.