BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32031760)

  • 1. Optogenetic Control of RhoA to Probe Subcellular Mechanochemical Circuitry.
    Cavanaugh KE; Oakes PW; Gardel ML
    Curr Protoc Cell Biol; 2020 Mar; 86(1):e102. PubMed ID: 32031760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic Tools for Manipulating Protein Subcellular Localization and Intracellular Signaling at Organelle Contact Sites.
    Benedetti L
    Curr Protoc; 2021 Mar; 1(3):e71. PubMed ID: 33657274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic control of cellular forces and mechanotransduction.
    Valon L; Marín-Llauradó A; Wyatt T; Charras G; Trepat X
    Nat Commun; 2017 Feb; 8():14396. PubMed ID: 28186127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical Plasma Membrane Perturbation Using Subcellular Optogenetics Drives Integrin-Activated Cell Migration.
    Meshik X; O'Neill PR; Gautam N
    ACS Synth Biol; 2019 Mar; 8(3):498-510. PubMed ID: 30764607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C-terminus of the oncoprotein TGAT is necessary for plasma membrane association and efficient RhoA-mediated signaling.
    van Unen J; Botman D; Yin T; Wu YI; Hink MA; Gadella TWJ; Postma M; Goedhart J
    BMC Cell Biol; 2018 Jun; 19(1):6. PubMed ID: 29879899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local RhoA activation induces cytokinetic furrows independent of spindle position and cell cycle stage.
    Wagner E; Glotzer M
    J Cell Biol; 2016 Jun; 213(6):641-9. PubMed ID: 27298323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene Delivery and Analysis of Optogenetic Induction of Lytic Cell Death.
    Oh TJ; Gworek B; Mehfooz A; Zhang K
    Curr Protoc; 2024 Apr; 4(4):e1023. PubMed ID: 38606936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal control of fibroblast growth factor receptor signals by blue light.
    Kim N; Kim JM; Lee M; Kim CY; Chang KY; Heo WD
    Chem Biol; 2014 Jul; 21(7):903-12. PubMed ID: 24981772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable and Photoswitchable Chemically Induced Dimerization for Chemo-optogenetic Control of Protein and Organelle Positioning.
    Chen X; Wu YW
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6796-6799. PubMed ID: 29637703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells.
    Benedetti L; Marvin JS; Falahati H; Guillén-Samander A; Looger LL; De Camilli P
    Elife; 2020 Nov; 9():. PubMed ID: 33174843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Component Optogenetic Tools for Inducible RhoA GTPase Signaling.
    Berlew EE; Kuznetsov IA; Yamada K; Bugaj LJ; Boerckel JD; Chow BY
    Adv Biol (Weinh); 2021 Sep; 5(9):e2100810. PubMed ID: 34288599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration.
    O'Neill PR; Kalyanaraman V; Gautam N
    Mol Biol Cell; 2016 May; 27(9):1442-50. PubMed ID: 26941336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized iLID Membrane Anchors for Local Optogenetic Protein Recruitment.
    Natwick DE; Collins SR
    ACS Synth Biol; 2021 May; 10(5):1009-1023. PubMed ID: 33843200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo.
    Buckley CE; Moore RE; Reade A; Goldberg AR; Weiner OD; Clarke JDW
    Dev Cell; 2016 Jan; 36(1):117-126. PubMed ID: 26766447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres.
    Oakes PW; Wagner E; Brand CA; Probst D; Linke M; Schwarz US; Glotzer M; Gardel ML
    Nat Commun; 2017 Jun; 8():15817. PubMed ID: 28604737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lights up on organelles: Optogenetic tools to control subcellular structure and organization.
    Kichuk TC; Carrasco-López C; Avalos JL
    WIREs Mech Dis; 2021 Jan; 13(1):e1500. PubMed ID: 32715616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. At Light Speed: Advances in Optogenetic Systems for Regulating Cell Signaling and Behavior.
    Repina NA; Rosenbloom A; Mukherjee A; Schaffer DV; Kane RS
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():13-39. PubMed ID: 28592174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic control of signaling in mammalian cells.
    Beyer HM; Naumann S; Weber W; Radziwill G
    Biotechnol J; 2015 Feb; 10(2):273-83. PubMed ID: 25216399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically inducible membrane recruitment and signaling systems.
    Hannanta-Anan P; Glantz ST; Chow BY
    Curr Opin Struct Biol; 2019 Aug; 57():84-92. PubMed ID: 30884362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OpEn-Tag-A Customizable Optogenetic Toolbox To Dissect Subcellular Signaling.
    Mühlhäuser WWD; Weber W; Radziwill G
    ACS Synth Biol; 2019 Jul; 8(7):1679-1684. PubMed ID: 31185174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.