These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
449 related articles for article (PubMed ID: 32031788)
1. Cation Engineering in Two-Dimensional Ruddlesden-Popper Lead Iodide Perovskites with Mixed Large A-Site Cations in the Cages. Fu Y; Jiang X; Li X; Traore B; Spanopoulos I; Katan C; Even J; Kanatzidis MG; Harel E J Am Chem Soc; 2020 Feb; 142(8):4008-4021. PubMed ID: 32031788 [TBL] [Abstract][Full Text] [Related]
2. Incorporating Large A Cations into Lead Iodide Perovskite Cages: Relaxed Goldschmidt Tolerance Factor and Impact on Exciton-Phonon Interaction. Fu Y; Hautzinger MP; Luo Z; Wang F; Pan D; Aristov MM; Guzei IA; Pan A; Zhu X; Jin S ACS Cent Sci; 2019 Aug; 5(8):1377-1386. PubMed ID: 31482120 [TBL] [Abstract][Full Text] [Related]
3. Negative Pressure Engineering with Large Cage Cations in 2D Halide Perovskites Causes Lattice Softening. Li X; Fu Y; Pedesseau L; Guo P; Cuthriell S; Hadar I; Even J; Katan C; Stoumpos CC; Schaller RD; Harel E; Kanatzidis MG J Am Chem Soc; 2020 Jul; 142(26):11486-11496. PubMed ID: 32492336 [TBL] [Abstract][Full Text] [Related]
4. Structure-Dependent Photoluminescence in Low-Dimensional Ethylammonium, Propylammonium, and Butylammonium Lead Iodide Perovskites. Lin CW; Liu F; Chen TY; Lee KH; Chang CK; He Y; Leung TL; Ng AMC; Hsu CH; Popović J; Djurišić A; Ahn H ACS Appl Mater Interfaces; 2020 Jan; 12(4):5008-5016. PubMed ID: 31888331 [TBL] [Abstract][Full Text] [Related]
5. Structure-Electronic Property Relationships of 2D Ruddlesden-Popper Tin- and Lead-based Iodide Perovskites. Zibouche N; Islam MS ACS Appl Mater Interfaces; 2020 Apr; 12(13):15328-15337. PubMed ID: 32159945 [TBL] [Abstract][Full Text] [Related]
6. Tuning Structure and Excitonic Properties of 2D Ruddlesden-Popper Germanium, Tin, and Lead Iodide Perovskites via Interplay between Cations. Mihalyi-Koch W; Folpini G; Roy CR; Kaiser W; Wu CS; Sanders KM; Guzei IA; Wright JC; De Angelis F; Cortecchia D; Petrozza A; Jin S J Am Chem Soc; 2023 Dec; 145(51):28111-28123. PubMed ID: 38091498 [TBL] [Abstract][Full Text] [Related]
7. Layered Hybrid Formamidinium Lead Iodide Perovskites: Challenges and Opportunities. Milić JV; Zakeeruddin SM; Grätzel M Acc Chem Res; 2021 Jun; 54(12):2729-2740. PubMed ID: 34085817 [TBL] [Abstract][Full Text] [Related]
8. Are Mixed-Halide Ruddlesden-Popper Perovskites Really Mixed? Toso S; Gushchina I; Oliver AG; Manna L; Kuno M ACS Energy Lett; 2022 Dec; 7(12):4242-4247. PubMed ID: 36531145 [TBL] [Abstract][Full Text] [Related]
9. Insight on the Stability of Thick Layers in 2D Ruddlesden-Popper and Dion-Jacobson Lead Iodide Perovskites. Vasileiadou ES; Wang B; Spanopoulos I; Hadar I; Navrotsky A; Kanatzidis MG J Am Chem Soc; 2021 Feb; 143(6):2523-2536. PubMed ID: 33534580 [TBL] [Abstract][Full Text] [Related]
10. First-principles study of lead-free Ge-based 2D Ruddlesden-Popper hybrid perovskites for solar cell applications. Babaei M; Ahmadi V; Darvish G Phys Chem Chem Phys; 2022 Sep; 24(35):21052-21060. PubMed ID: 36004762 [TBL] [Abstract][Full Text] [Related]
11. Structural Dynamics of Two-Dimensional Ruddlesden-Popper Perovskites: A Computational Study. Fridriksson MB; Maheshwari S; Grozema FC J Phys Chem C Nanomater Interfaces; 2020 Oct; 124(40):22096-22104. PubMed ID: 33072237 [TBL] [Abstract][Full Text] [Related]
12. Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties. Chang YH; Lin JC; Chen YC; Kuo TR; Wang DY Nanoscale Res Lett; 2018 Aug; 13(1):247. PubMed ID: 30136147 [TBL] [Abstract][Full Text] [Related]
13. Four Lead-free Layered Double Perovskites with the McClure ET; McCormick AP; Woodward PM Inorg Chem; 2020 May; 59(9):6010-6017. PubMed ID: 32324394 [TBL] [Abstract][Full Text] [Related]
14. Ethylammonium as an alternative cation for efficient perovskite solar cells from first-principles calculations. Liu D; Li Q; Wu K RSC Adv; 2019 Mar; 9(13):7356-7361. PubMed ID: 35519989 [TBL] [Abstract][Full Text] [Related]
15. Spatial Heterogeneity of Biexcitons in Two-Dimensional Ruddlesden-Popper Lead Iodide Perovskites. Armstrong ZT; Forlano KM; Roy CR; Bohlmann Kunz M; Farrell K; Pan D; Wright JC; Jin S; Zanni MT J Am Chem Soc; 2023 Aug; 145(33):18568-18577. PubMed ID: 37565990 [TBL] [Abstract][Full Text] [Related]
16. Density Functional Theory - Machine Learning Approach to Analyze the Bandgap of Elemental Halide Perovskites and Ruddlesden-Popper Phases. Allam O; Holmes C; Greenberg Z; Kim KC; Jang SS Chemphyschem; 2018 Oct; 19(19):2559-2565. PubMed ID: 29928788 [TBL] [Abstract][Full Text] [Related]
17. Emergence of Rashba-/Dresselhaus effects in Ruddlesden-Popper halide perovskites with octahedral rotations. Krach S; Forero-Correa N; Biega RI; Reyes-Lillo SE; Leppert L J Phys Condens Matter; 2023 Mar; 35(17):. PubMed ID: 36806018 [TBL] [Abstract][Full Text] [Related]
18. Mixed formamidinium-methylammonium lead iodide perovskite from first-principles: hydrogen-bonding impact on the electronic properties. Senno M; Tinte S Phys Chem Chem Phys; 2021 Mar; 23(12):7376-7385. PubMed ID: 33876097 [TBL] [Abstract][Full Text] [Related]
19. Contrasting the stability, octahedral distortions, and optoelectronic properties of 3D MABX Danelon JG; Santos RM; Dias AC; Da Silva JLF; Lima MP Phys Chem Chem Phys; 2024 Mar; 26(10):8469-8487. PubMed ID: 38410922 [TBL] [Abstract][Full Text] [Related]