These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32031838)

  • 1. Radiative Cooling of a Superconducting Resonator.
    Xu M; Han X; Zou CL; Fu W; Xu Y; Zhong C; Jiang L; Tang HX
    Phys Rev Lett; 2020 Jan; 124(3):033602. PubMed ID: 32031838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimode Strong Coupling in Superconducting Cavity Piezoelectromechanics.
    Han X; Zou CL; Tang HX
    Phys Rev Lett; 2016 Sep; 117(12):123603. PubMed ID: 27689272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong coupling of magnons in a YIG sphere to photons in a planar superconducting resonator in the quantum limit.
    Morris RGE; van Loo AF; Kosen S; Karenowska AD
    Sci Rep; 2017 Sep; 7(1):11511. PubMed ID: 28912482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ground state cooling of a nanomechanical resonator in the nonresolved regime via quantum interference.
    Xia K; Evers J
    Phys Rev Lett; 2009 Nov; 103(22):227203. PubMed ID: 20366124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-induced cooling of a superconducting qubit.
    Valenzuela SO; Oliver WD; Berns DM; Berggren KK; Levitov LS; Orlando TP
    Science; 2006 Dec; 314(5805):1589-92. PubMed ID: 17158325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and detection of a mechanical resonator near the ground state of motion.
    Rocheleau T; Ndukum T; Macklin C; Hertzberg JB; Clerk AA; Schwab KC
    Nature; 2010 Jan; 463(7277):72-5. PubMed ID: 20010604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum ground state and single-phonon control of a mechanical resonator.
    O'Connell AD; Hofheinz M; Ansmann M; Bialczak RC; Lenander M; Lucero E; Neeley M; Sank D; Wang H; Weides M; Wenner J; Martinis JM; Cleland AN
    Nature; 2010 Apr; 464(7289):697-703. PubMed ID: 20237473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-kelvin optical cooling of a micromechanical resonator.
    Kleckner D; Bouwmeester D
    Nature; 2006 Nov; 444(7115):75-8. PubMed ID: 17080086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements.
    de Graaf SE; Danilov AV; Adamyan A; Kubatkin SE
    Rev Sci Instrum; 2013 Feb; 84(2):023706. PubMed ID: 23464217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate.
    Forsch M; Stockill R; Wallucks A; Marinković I; Gärtner C; Norte RA; van Otten F; Fiore A; Srinivasan K; Gröblacher S
    Nat Phys; 2020; 16(1):. PubMed ID: 34795789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sub-Kelvin (100 mK) time resolved electron paramagnetic resonance spectroscopy for studies of quantum dynamics of low-dimensional spin systems at low frequencies and magnetic fields.
    Cebulka R; Del Barco E
    Rev Sci Instrum; 2019 Aug; 90(8):085106. PubMed ID: 31472653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED.
    Hua M; Tao MJ; Deng FG
    Sci Rep; 2015 Mar; 5():9274. PubMed ID: 25787147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Materials loss measurements using superconducting microwave resonators.
    McRae CRH; Wang H; Gao J; Vissers MR; Brecht T; Dunsworth A; Pappas DP; Mutus J
    Rev Sci Instrum; 2020 Sep; 91(9):091101. PubMed ID: 33003823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Microwave Radiometry with a Superconducting Qubit.
    Wang Z; Xu M; Han X; Fu W; Puri S; Girvin SM; Tang HX; Shankar S; Devoret MH
    Phys Rev Lett; 2021 May; 126(18):180501. PubMed ID: 34018799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum state engineering with circuit electromechanical three-body interactions.
    Abdi M; Pernpeintner M; Gross R; Huebl H; Hartmann MJ
    Phys Rev Lett; 2015 May; 114(17):173602. PubMed ID: 25978232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators.
    Rochman J; Xie T; Bartholomew JG; Schwab KC; Faraon A
    Nat Commun; 2023 Mar; 14(1):1153. PubMed ID: 36859486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings.
    Beaudoin F; Lachance-Quirion D; Coish WA; Pioro-Ladrière M
    Nanotechnology; 2016 Nov; 27(46):464003. PubMed ID: 27749276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
    Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ
    Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling molecular spin centers to microwave planar resonators: towards integration of molecular qubits in quantum circuits.
    Bonizzoni C; Ghirri A; Bader K; van Slageren J; Perfetti M; Sorace L; Lan Y; Fuhr O; Ruben M; Affronte M
    Dalton Trans; 2016 Nov; 45(42):16596-16603. PubMed ID: 27468434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sideband cooling of micromechanical motion to the quantum ground state.
    Teufel JD; Donner T; Li D; Harlow JW; Allman MS; Cicak K; Sirois AJ; Whittaker JD; Lehnert KW; Simmonds RW
    Nature; 2011 Jul; 475(7356):359-63. PubMed ID: 21734657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.