These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32031838)

  • 21. Piezoelectric tunable microwave superconducting cavity.
    C Carvalho N; Fan Y; Tobar ME
    Rev Sci Instrum; 2016 Sep; 87(9):094702. PubMed ID: 27782556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing.
    Bao Z; Li Y; Wang Z; Wang J; Yang J; Xiong H; Song Y; Wu Y; Zhang H; Duan L
    Nat Commun; 2024 Jul; 15(1):5958. PubMed ID: 39009574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laser cooling of a nanomechanical oscillator into its quantum ground state.
    Chan J; Alegre TP; Safavi-Naeini AH; Hill JT; Krause A; Gröblacher S; Aspelmeyer M; Painter O
    Nature; 2011 Oct; 478(7367):89-92. PubMed ID: 21979049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Manipulation and coherence of ultra-cold atoms on a superconducting atom chip.
    Bernon S; Hattermann H; Bothner D; Knufinke M; Weiss P; Jessen F; Cano D; Kemmler M; Kleiner R; Koelle D; Fortágh J
    Nat Commun; 2013; 4():2380. PubMed ID: 23986123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultraefficient cooling of resonators: beating sideband cooling with quantum control.
    Wang X; Vinjanampathy S; Strauch FW; Jacobs K
    Phys Rev Lett; 2011 Oct; 107(17):177204. PubMed ID: 22107575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity.
    Singh V; Bosman SJ; Schneider BH; Blanter YM; Castellanos-Gomez A; Steele GA
    Nat Nanotechnol; 2014 Oct; 9(10):820-4. PubMed ID: 25150717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum-enabled millimetre wave to optical transduction using neutral atoms.
    Kumar A; Suleymanzade A; Stone M; Taneja L; Anferov A; Schuster DI; Simon J
    Nature; 2023 Mar; 615(7953):614-619. PubMed ID: 36949338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ground state cooling of an ultracoherent electromechanical system.
    Seis Y; Capelle T; Langman E; Saarinen S; Planz E; Schliesser A
    Nat Commun; 2022 Mar; 13(1):1507. PubMed ID: 35314677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantum state transfer and controlled-phase gate on one-dimensional superconducting resonators assisted by a quantum bus.
    Hua M; Tao MJ; Deng FG
    Sci Rep; 2016 Feb; 6():22037. PubMed ID: 26907366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-Photon Cooling in Microwave Magnetomechanics.
    Zoepfl D; Juan ML; Schneider CMF; Kirchmair G
    Phys Rev Lett; 2020 Jul; 125(2):023601. PubMed ID: 32701311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TEM at millikelvin temperatures: Observing and utilizing superconducting qubits.
    Okamoto H; Firouzmandi R; Miyamura R; Sazgari V; Okumura S; Uchita S; Kaya II
    Micron; 2022 Oct; 161():103330. PubMed ID: 35932630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detecting spins by their fluorescence with a microwave photon counter.
    Albertinale E; Balembois L; Billaud E; Ranjan V; Flanigan D; Schenkel T; Estève D; Vion D; Bertet P; Flurin E
    Nature; 2021 Dec; 600(7889):434-438. PubMed ID: 34912088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum bath suppression in a superconducting circuit by immersion cooling.
    Lucas M; Danilov AV; Levitin LV; Jayaraman A; Casey AJ; Faoro L; Tzalenchuk AY; Kubatkin SE; Saunders J; de Graaf SE
    Nat Commun; 2023 Jun; 14(1):3522. PubMed ID: 37316500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron Spin Resonance at the Level of 10^{4} Spins Using Low Impedance Superconducting Resonators.
    Eichler C; Sigillito AJ; Lyon SA; Petta JR
    Phys Rev Lett; 2017 Jan; 118(3):037701. PubMed ID: 28157376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom.
    Zhang S; Zhang JQ; Zhang J; Wu CW; Wu W; Chen PX
    Opt Express; 2014 Nov; 22(23):28118-31. PubMed ID: 25402052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-dimensional optomechanical crystal cavity with high quantum cooperativity.
    Ren H; Matheny MH; MacCabe GS; Luo J; Pfeifer H; Mirhosseini M; Painter O
    Nat Commun; 2020 Jul; 11(1):3373. PubMed ID: 32632132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilizing Gate-Controlled Supercurrent for All-Metallic Tunable Superconducting Microwave Resonators.
    Ryu Y; Jeong J; Suh J; Kim J; Choi H; Cha J
    Nano Lett; 2024 Jan; 24(4):1223-1230. PubMed ID: 38232153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laser Cooling of a Nanomechanical Oscillator to Its Zero-Point Energy.
    Qiu L; Shomroni I; Seidler P; Kippenberg TJ
    Phys Rev Lett; 2020 May; 124(17):173601. PubMed ID: 32412282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupling Rydberg Atoms to Microwave Fields in a Superconducting Coplanar Waveguide Resonator.
    Morgan AA; Hogan SD
    Phys Rev Lett; 2020 May; 124(19):193604. PubMed ID: 32469590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication and Characterization of Superconducting Resonators.
    Cataldo G; Barrentine EM; Brown AD; Moseley SH; U-Yen K; Wollack EJ
    J Vis Exp; 2016 May; (111):. PubMed ID: 27284966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.