These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 32031987)
1. Comparative study of gelatin cryogels reinforced with hydroxyapatites with different morphologies and interfacial bonding. Gu L; Zhang Y; Zhang L; Huang Y; Zuo D; Cai Q; Yang X Biomed Mater; 2020 Mar; 15(3):035012. PubMed ID: 32031987 [TBL] [Abstract][Full Text] [Related]
2. Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration. Gu L; Zhang J; Li L; Du Z; Cai Q; Yang X Biomed Mater; 2019 Apr; 14(4):045001. PubMed ID: 30939454 [TBL] [Abstract][Full Text] [Related]
3. Efficient regeneration of rat calvarial defect with gelatin-hydroxyapatite composite cryogel. Zhang Y; Leng H; Du Z; Huang Y; Liu X; Zhao Z; Zhang X; Cai Q; Yang X Biomed Mater; 2020 Sep; 15(6):065005. PubMed ID: 32422614 [TBL] [Abstract][Full Text] [Related]
4. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067 [TBL] [Abstract][Full Text] [Related]
5. Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility. Kemençe N; Bölgen N J Tissue Eng Regen Med; 2017 Jan; 11(1):20-33. PubMed ID: 23997022 [TBL] [Abstract][Full Text] [Related]
6. The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration. Hixon KR; Eberlin CT; Lu T; Neal SM; Case ND; McBride-Gagyi SH; Sell SA Biomed Mater; 2017 Mar; 12(2):025005. PubMed ID: 28145891 [TBL] [Abstract][Full Text] [Related]
7. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study. Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110 [TBL] [Abstract][Full Text] [Related]
8. Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering. Thomas A; Bera J J Biomater Sci Polym Ed; 2019 May; 30(7):561-579. PubMed ID: 30801229 [TBL] [Abstract][Full Text] [Related]
9. Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo studies. Chang KH; Liao HT; Chen JP Acta Biomater; 2013 Nov; 9(11):9012-26. PubMed ID: 23851171 [TBL] [Abstract][Full Text] [Related]
10. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications. Sharma A; Bhat S; Nayak V; Kumar A Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201 [TBL] [Abstract][Full Text] [Related]
11. MXene reinforced microporous bacterial cellulose/sodium alginate dual crosslinked cryogel for bone tissue engineering. Hu T; Cai P; Xia C Biomed Mater; 2024 Jul; 19(5):. PubMed ID: 39025110 [TBL] [Abstract][Full Text] [Related]
12. Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration. Zheng J; Zhao F; Zhang W; Mo Y; Zeng L; Li X; Chen X Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():119-127. PubMed ID: 29752080 [TBL] [Abstract][Full Text] [Related]
13. Design of gelatin cryogel scaffolds with the ability to release simvastatin for potential bone tissue engineering applications. Yaman SM; Demir D; Bölgen N Biomed Mater; 2024 Jul; 19(5):. PubMed ID: 39025109 [TBL] [Abstract][Full Text] [Related]
14. Preparation of Gelatin and Gelatin/Hyaluronic Acid Cryogel Scaffolds for the 3D Culture of Mesothelial Cells and Mesothelium Tissue Regeneration. Kao HH; Kuo CY; Chen KS; Chen JP Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31547444 [TBL] [Abstract][Full Text] [Related]
16. A Biomimicking Polymeric Cryogel Scaffold for Repair of Critical-Sized Cranial Defect in a Rat Model. Liu C; Lin C; Feng X; Wu Z; Lin G; Quan C; Chen B; Zhang C Tissue Eng Part A; 2019 Dec; 25(23-24):1591-1604. PubMed ID: 30950322 [TBL] [Abstract][Full Text] [Related]
17. Inorganic/organic biocomposite cryogels for regeneration of bony tissues. Mishra R; Kumar A J Biomater Sci Polym Ed; 2011; 22(16):2107-26. PubMed ID: 21067655 [TBL] [Abstract][Full Text] [Related]
19. Cellulose nanocrystals-reinforced dual crosslinked double network GelMA/hyaluronic acid injectable nanocomposite cryogels with improved mechanical properties for cartilage tissue regeneration. Jonidi Shariatzadeh F; Solouk A; Mirzadeh H; Bonakdar S; Sadeghi D; Khoulenjani SB J Biomed Mater Res B Appl Biomater; 2024 Feb; 112(2):e35346. PubMed ID: 38359175 [TBL] [Abstract][Full Text] [Related]
20. Injectable, High Specific Surface Area Cryogel Microscaffolds Integrated with Osteoinductive Bioceramic Fibers for Enhanced Bone Regeneration. Wang Y; Yuan Z; Pang Y; Zhang D; Li G; Zhang X; Yu Y; Yang X; Cai Q ACS Appl Mater Interfaces; 2023 May; 15(17):20661-20676. PubMed ID: 37083252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]