BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 32032490)

  • 1. Structural Elucidation of Peptide Binding to KLHL-12, a Substrate Specific Adapter Protein in a Cul3-Ring E3 Ligase Complex.
    Zhao B; Payne WG; Sai J; Lu Z; Olejniczak ET; Fesik SW
    Biochemistry; 2020 Mar; 59(8):964-969. PubMed ID: 32032490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a PGXPP degron motif in dishevelled and structural basis for its binding to the E3 ligase KLHL12.
    Chen Z; Wasney GA; Picaud S; Filippakopoulos P; Vedadi M; D'Angiolella V; Bullock AN
    Open Biol; 2020 Jun; 10(6):200041. PubMed ID: 32574548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Basis for Recruitment of DAPK1 to the KLHL20 E3 Ligase.
    Chen Z; Picaud S; Filippakopoulos P; D'Angiolella V; Bullock AN
    Structure; 2019 Sep; 27(9):1395-1404.e4. PubMed ID: 31279627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis of cullin-3 (Cul3) ubiquitin ligase subversion by vaccinia virus protein A55.
    Gao C; Pallett MA; Croll TI; Smith GL; Graham SC
    J Biol Chem; 2019 Apr; 294(16):6416-6429. PubMed ID: 30819806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Update on the Kelch-like (KLHL) gene family.
    Dhanoa BS; Cogliati T; Satish AG; Bruford EA; Friedman JS
    Hum Genomics; 2013 May; 7(1):13. PubMed ID: 23676014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting Cul3-scaffold E3 ligase complex via KLHL substrate adaptors for cancer therapy.
    Xiang S; Shi X; Chen P; Chen Y; Bing S; Jin X; Cao J; Wang J; Yang B; Shao X; He Q; Ying M
    Pharmacol Res; 2021 Jul; 169():105616. PubMed ID: 33872809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kelch-like proteins in the gastrointestinal tumors.
    Fu AB; Xiang SF; He QJ; Ying MD
    Acta Pharmacol Sin; 2023 May; 44(5):931-939. PubMed ID: 36266566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BTB Protein KLHL12 targets the dopamine D4 receptor for ubiquitination by a Cul3-based E3 ligase.
    Rondou P; Haegeman G; Vanhoenacker P; Van Craenenbroeck K
    J Biol Chem; 2008 Apr; 283(17):11083-96. PubMed ID: 18303015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CUL3-KBTBD6/KBTBD7 ubiquitin ligase cooperates with GABARAP proteins to spatially restrict TIAM1-RAC1 signaling.
    Genau HM; Huber J; Baschieri F; Akutsu M; Dötsch V; Farhan H; Rogov V; Behrends C
    Mol Cell; 2015 Mar; 57(6):995-1010. PubMed ID: 25684205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of KLHL family members in human cancers.
    Ye G; Wang J; Yang W; Li J; Ye M; Jin X
    Am J Cancer Res; 2022; 12(11):5105-5139. PubMed ID: 36504893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into links between autophagy and the ubiquitin system from the structure of LC3B bound to the LIR motif from the E3 ligase NEDD4.
    Qiu Y; Zheng Y; Wu KP; Schulman BA
    Protein Sci; 2017 Aug; 26(8):1674-1680. PubMed ID: 28470758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response.
    Tong KI; Padmanabhan B; Kobayashi A; Shang C; Hirotsu Y; Yokoyama S; Yamamoto M
    Mol Cell Biol; 2007 Nov; 27(21):7511-21. PubMed ID: 17785452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased KLHL3 expression is involved in the pathogenesis of pseudohypoaldosteronism type II caused by cullin 3 mutation in vivo.
    Yoshida S; Araki Y; Mori T; Sasaki E; Kasagi Y; Isobe K; Susa K; Inoue Y; Bomont P; Okado T; Rai T; Uchida S; Sohara E
    Clin Exp Nephrol; 2018 Dec; 22(6):1251-1257. PubMed ID: 29869755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cullin 3 and Its Role in Tumorigenesis.
    Chen RH
    Adv Exp Med Biol; 2020; 1217():187-210. PubMed ID: 31898229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keap1.
    Lo SC; Hannink M
    Mol Cell Biol; 2006 Feb; 26(4):1235-44. PubMed ID: 16449638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotavirus NSP1 Requires Casein Kinase II-Mediated Phosphorylation for Hijacking of Cullin-RING Ligases.
    Davis KA; Morelli M; Patton JT
    mBio; 2017 Aug; 8(4):. PubMed ID: 28851847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase.
    Kozlov G; De Crescenzo G; Lim NS; Siddiqui N; Fantus D; Kahvejian A; Trempe JF; Elias D; Ekiel I; Sonenberg N; O'Connor-McCourt M; Gehring K
    EMBO J; 2004 Jan; 23(2):272-81. PubMed ID: 14685257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway.
    Lu M; Liu T; Jiao Q; Ji J; Tao M; Liu Y; You Q; Jiang Z
    Eur J Med Chem; 2018 Feb; 146():251-259. PubMed ID: 29407955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotavirus NSP1 Associates with Components of the Cullin RING Ligase Family of E3 Ubiquitin Ligases.
    Lutz LM; Pace CR; Arnold MM
    J Virol; 2016 Jul; 90(13):6036-48. PubMed ID: 27099313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase.
    Pintard L; Willis JH; Willems A; Johnson JL; Srayko M; Kurz T; Glaser S; Mains PE; Tyers M; Bowerman B; Peter M
    Nature; 2003 Sep; 425(6955):311-6. PubMed ID: 13679921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.