BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32032625)

  • 1. Properties of lower level processing modulate the actions of the norepinephrine system during response inhibition.
    Mückschel M; Ziemssen T; Beste C
    Biol Psychol; 2020 Apr; 152():107862. PubMed ID: 32032625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The norepinephrine system affects specific neurophysiological subprocesses in the modulation of inhibitory control by working memory demands.
    Chmielewski WX; Mückschel M; Ziemssen T; Beste C
    Hum Brain Mapp; 2017 Jan; 38(1):68-81. PubMed ID: 27519546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demands on response inhibition processes determine modulations of theta band activity in superior frontal areas and correlations with pupillometry - Implications for the norepinephrine system during inhibitory control.
    Dippel G; Mückschel M; Ziemssen T; Beste C
    Neuroimage; 2017 Aug; 157():575-585. PubMed ID: 28647483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anodal tDCS affects neuromodulatory effects of the norepinephrine system on superior frontal theta activity during response inhibition.
    Adelhöfer N; Mückschel M; Teufert B; Ziemssen T; Beste C
    Brain Struct Funct; 2019 Apr; 224(3):1291-1300. PubMed ID: 30701308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific properties of the SI and SII somatosensory areas and their effects on motor control: a system neurophysiological study.
    Friedrich J; Mückschel M; Beste C
    Brain Struct Funct; 2018 Mar; 223(2):687-699. PubMed ID: 28917007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of phasic norepinephrine modulations during task switching: evidence for specific effects in parietal areas.
    Wolff N; Mückschel M; Ziemssen T; Beste C
    Brain Struct Funct; 2018 Mar; 223(2):925-940. PubMed ID: 29026994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role of the norepinephrine system or effort in the interplay of different facets of inhibitory control.
    Yu S; Ghin F; Mückschel M; Ziemssen T; Stock AK; Beste C
    Neuropsychologia; 2022 Feb; 166():108143. PubMed ID: 34998865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus-response recoding during inhibitory control is associated with superior frontal and parahippocampal processes.
    Chmielewski WX; Beste C
    Neuroimage; 2019 Aug; 196():227-236. PubMed ID: 30991125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.
    Gonzalez-Rosa JJ; Inuggi A; Blasi V; Cursi M; Annovazzi P; Comi G; Falini A; Leocani L
    Int J Psychophysiol; 2013 Jul; 89(1):37-47. PubMed ID: 23664841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the interrelation of 1/
    Pertermann M; Mückschel M; Adelhöfer N; Ziemssen T; Beste C
    J Neurophysiol; 2019 May; 121(5):1633-1643. PubMed ID: 30811254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A possible role of the norepinephrine system during sequential cognitive flexibility - Evidence from EEG and pupil diameter data.
    Giller F; Mückschel M; Ziemssen T; Beste C
    Cortex; 2020 Jul; 128():22-34. PubMed ID: 32311545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The norepinephrine system and its relevance for multi-component behavior.
    Mückschel M; Gohil K; Ziemssen T; Beste C
    Neuroimage; 2017 Feb; 146():1062-1070. PubMed ID: 27720820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When 'go' and 'nogo' are equally frequent: ERP components and cortical tomography.
    Lavric A; Pizzagalli DA; Forstmeier S
    Eur J Neurosci; 2004 Nov; 20(9):2483-8. PubMed ID: 15525290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somato-motor inhibitory processing in humans: a study with MEG and ERP.
    Nakata H; Inui K; Wasaka T; Akatsuka K; Kakigi R
    Eur J Neurosci; 2005 Oct; 22(7):1784-92. PubMed ID: 16197519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between ERP components and EEG spatial complexity in a visual Go/Nogo task.
    Jia H; Li H; Yu D
    J Neurophysiol; 2017 Jan; 117(1):275-283. PubMed ID: 27784803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How the depth of processing modulates emotional interference - evidence from EEG and pupil diameter data.
    Schreiter ML; Chmielewski WX; Mückschel M; Ziemssen T; Beste C
    Cogn Affect Behav Neurosci; 2019 Oct; 19(5):1231-1246. PubMed ID: 31190135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low and high stimulation frequencies differentially affect automated response selection in the superior parietal cortex - implications for somatosensory area processes.
    Friedrich J; Beste C
    Sci Rep; 2020 Mar; 10(1):3954. PubMed ID: 32127632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The norepinephrine system shows information-content specific properties during cognitive control - Evidence from EEG and pupillary responses.
    Mückschel M; Chmielewski W; Ziemssen T; Beste C
    Neuroimage; 2017 Apr; 149():44-52. PubMed ID: 28130191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in response inhibition processes between adolescents and adults are modulated by sensory processes.
    Bodmer B; Friedrich J; Roessner V; Beste C
    Dev Cogn Neurosci; 2018 Jun; 31():35-45. PubMed ID: 29730536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paradoxical, causal effects of sensory gain modulation on motor inhibitory control - a tDCS, EEG-source localization study.
    Friedrich J; Beste C
    Sci Rep; 2018 Nov; 8(1):17486. PubMed ID: 30504787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.