These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 32032879)
1. Extraction of metals from mildly acidic tropical soils: Interactions between chelating ligand, pH and soil type. Orr R; Hocking RK; Pattison A; Nelson PN Chemosphere; 2020 Jun; 248():126060. PubMed ID: 32032879 [TBL] [Abstract][Full Text] [Related]
2. Novel chelating agents for iron, manganese, zinc, and copper mixed fertilisation in high pH soil-less cultures. López-Rayo S; Nadal P; Lucena JJ J Sci Food Agric; 2016 Mar; 96(4):1111-20. PubMed ID: 25801317 [TBL] [Abstract][Full Text] [Related]
3. Trace elements in agroecosystems and impacts on the environment. He ZL; Yang XE; Stoffella PJ J Trace Elem Med Biol; 2005; 19(2-3):125-40. PubMed ID: 16325528 [TBL] [Abstract][Full Text] [Related]
4. The use of zero-valent Fe for curbing toxic emissions after EDTA-based washing of Pb, Zn and Cd contaminated calcareous and acidic soil. Gluhar S; Jez E; Lestan D Chemosphere; 2019 Jan; 215():482-489. PubMed ID: 30340156 [TBL] [Abstract][Full Text] [Related]
5. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699 [TBL] [Abstract][Full Text] [Related]
6. Chelant extraction of heavy metals from contaminated soils. Peters RW J Hazard Mater; 1999 Apr; 66(1-2):151-210. PubMed ID: 10379036 [TBL] [Abstract][Full Text] [Related]
7. Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties. Guo X; Zhao G; Zhang G; He Q; Wei Z; Zheng W; Qian T; Wu Q Chemosphere; 2018 Oct; 209():776-782. PubMed ID: 29960945 [TBL] [Abstract][Full Text] [Related]
8. Application of manures to mitigate the harmful effects of electrokinetic remediation of heavy metals on soil microbial properties in polluted soils. Tahmasbian I; Safari Sinegani AA; Nguyen TTN; Che R; Phan TD; Hosseini Bai S Environ Sci Pollut Res Int; 2017 Dec; 24(34):26485-26496. PubMed ID: 28948525 [TBL] [Abstract][Full Text] [Related]
9. Assessment of amendments for the immobilization of Cu in soils containing EDDS leachates. Yang L; Jiang L; Wang G; Chen Y; Shen Z; Luo C Environ Sci Pollut Res Int; 2015 Nov; 22(21):16525-34. PubMed ID: 26077318 [TBL] [Abstract][Full Text] [Related]
10. Removal of Cu and Pb from contaminated agricultural soil using mixed chelators of fulvic acid potassium and citric acid. Wang Y; Lin Q; Xiao R; Cheng S; Luo H; Wen X; Wu L; Zhong Q Ecotoxicol Environ Saf; 2020 Dec; 206():111179. PubMed ID: 32861964 [TBL] [Abstract][Full Text] [Related]
11. Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils. Yang ZH; Dong CD; Chen CW; Sheu YT; Kao CM Environ Sci Pollut Res Int; 2018 Feb; 25(6):5231-5242. PubMed ID: 28528500 [TBL] [Abstract][Full Text] [Related]
12. Chelating agents related to ethylenediamine bis(2-hydroxyphenyl)acetic acid (EDDHA): synthesis, characterization, and equilibrium studies of the free ligands and their Mg2+, Ca2+, Cu2+, and Fe3+ chelates. Yunta F; García-Marco S; Lucena JJ; Gómez-Gallego M; Alcázar R; Sierra MA Inorg Chem; 2003 Aug; 42(17):5412-21. PubMed ID: 12924915 [TBL] [Abstract][Full Text] [Related]
13. Distribution of contaminant trace metals inadvertently provided by phosphorus fertilisers: movement, chemical fractions and mass balances in contrasting acidic soils. Molina-Roco M; Escudey M; Antilén M; Arancibia-Miranda N; Manquián-Cerda K Environ Geochem Health; 2018 Dec; 40(6):2491-2509. PubMed ID: 29876675 [TBL] [Abstract][Full Text] [Related]
14. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index. Kim MS; Min HG; Lee SH; Kim JG PLoS One; 2016; 11(11):e0166335. PubMed ID: 27835687 [TBL] [Abstract][Full Text] [Related]
15. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Vítková M; Puschenreiter M; Komárek M Chemosphere; 2018 Jun; 200():217-226. PubMed ID: 29486361 [TBL] [Abstract][Full Text] [Related]
16. Remediation of heavy metal contamination of sediments and soils using ligand-coated dense nanoparticles. Huang Y; Keller AA PLoS One; 2020; 15(9):e0239137. PubMed ID: 32997670 [TBL] [Abstract][Full Text] [Related]
17. Cu, Mn, Fe, and Zn levels in soils of Shika area, Nigeria. Mashi SA; Yaro SA; Haiba AS Biomed Environ Sci; 2004 Dec; 17(4):426-31. PubMed ID: 15745247 [TBL] [Abstract][Full Text] [Related]
18. Preparation of a silicon-iron amendment from acid-extracted copper tailings for remediating multi-metal-contaminated soils. Mu J; Hu Z; Huang L; Xie Z; Holm PE Environ Pollut; 2020 Feb; 257():113565. PubMed ID: 31733972 [TBL] [Abstract][Full Text] [Related]
19. Synergistic effects of the combination of oxalate and ascorbate on arsenic extraction from contaminated soils. Lee JC; Kim EJ; Baek K Chemosphere; 2017 Feb; 168():1439-1446. PubMed ID: 27923505 [TBL] [Abstract][Full Text] [Related]
20. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Seshadri B; Bolan NS; Choppala G; Kunhikrishnan A; Sanderson P; Wang H; Currie LD; Tsang DCW; Ok YS; Kim G Chemosphere; 2017 Oct; 184():197-206. PubMed ID: 28595145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]